Transition and Main Group Metals in Cyclic Phosphazanes and Phosphazenes

Michael Witt and Herbert W. Roesky

Institut für Anorganische Chemie der Universität Göttingen, D-37077 Göttingen, Germany

Received July 8, 1993 (Revised Manuscript Received October 30, 1993)

Contents

I.	Abbreviations					
II.	Introduction	1163				
III.	Metal Bound to Phosphorus	1163				
	A. Diphosphazane Compounds	1163				
	B. Cyclophosphazane Compounds	1164				
	C. Synthetic, Theoretical, and Structural Aspects	1165				
IV.	Metal Bound to Nitrogen	1168				
	A. Compounds with Coordinative and Single Bonds to the Metal	1168				
	B. Heterocycles with Metal-Nitrogen Multiple Bonds	1170				
	C. Synthetic, Theoretical, and Structural Aspects	1172				
۷.	Heteroelements Other than Metals in the Ring Skeleton	1174				
	A. Metal Bound to One Element Other than Nitrogen	1174				
	B. Heteroelements Nonadjacent to the Metal	1175				
VI.	Metal Bound to Phosphorus and Nitrogen	1177				
VII.	Applications and Outlook	1178				
VIII.	Acknowledgments 1					
IX.	References	1179				

I. Abbreviations

34.	
Me	metnyi
Et	ethyl
Pr	propyl
Bu	butyl
Ad	1-adamantyl
Ph	phenyl
Tol	tolyl
Ср	cyclopentadienyl
Cot	cyclooctatetraenediyl
Tmpip	2,2,6,6-tetramethylpiperidyl
OTF	trifluoromethylsulfonyl
Thf	tetrahydrofuran
Py	pyridine
Cod	η^2 -1,5-cyclooctadiene
Bipy	2,2'-bipyridyl
Dppe	1,2-bis(diphenylphosphino)ethane
Dbu	diazabicycloundecene
lp	lone pair

II. Introduction

While the first nonphosphidic metal-phosphorus compound, $TiCl_4 \times PH_3$ was described by H. Rose¹ in 1832, the first metal-phosphorus-nitrogen compounds were synthesized in 1962, when D. S. Payne et al.² reported aminophosphane complexes of HgI₂ and CuI.

0009-2665/94/0794-1163\$14.00/0

The same group had also prepared the first cyclic compounds, diphosphazane chelates of Ni and Pd halides.³ The earlier papers dealt mainly with coordination compounds, heterocycles containing covalent metal-phosphorus and metal-nitrogen bonds became available in the late 1970s, and the first cyclic compound with a metal-nitrogen multiple bond was described in 1986.⁴

The forthcoming interest in this field of inorganic chemistry is manifested in the increasing number of publications in the last 15 years due to different outstanding properties of these compounds making some of them useful candidates for catalytical and medical applications as well as precursors for new materials, e.g., polymers, semiconductors, etc.

The great variety of compounds is due to the different chemical behaviors of nitrogen and phosphorus sites. Nitrogen as a hard donor is capable of stabilizing metals in high oxidation states; the chelate effect may allow unusual coordination numbers and geometries as well. Phosphorus as a soft base is best suited to stabilize metals in low to medium oxidation states.

This article summarizes the field of cyclic metalphosphorus-nitrogen systems; some facets of the material compiled here have been treated earlier under different aspects by different authors.⁵⁻¹⁵ Main emphasis has been put upon compounds with covalent bonds from the metal to nitrogen or phosphorus; pure coordination compounds have been included if they have covalent counterparts or if complexation effects the stability of the resulting species. Literature coverage is maintained until early 1993.

III. Metal Bound to Phosphorus

Compounds with the metal bound to two phosphorus atoms can be roughly divided into two principal groups: (i) diphosphazane complexes where the P-N-Punit is attached to one metal atom yielding fourmembered rings and complexes with the P-N-P core attached to two metal centers leading to eightmembered heterocycles (compounds with metal-metal bonds could also be considered to fall within the scope of this review, but since no covalent bonds from metal to phosphorus are present in these species they are excluded) and (ii) cyclodi- and tetraphosphazane complexes.

A. Diphosphazane Compounds

Three different bonding modes have been found with 1,2,4,3-azadiphosphametalletidines: (i) two covalent metal phosphorus bonds, (ii) one formally covalent and one dative bond resulting in zwitterionic species, and

Michael Witt was born in 1952 in Frankfurt, Germany. He studied chemistry at the Johann-Wolfgang-Goethe-Universität in Frankfurt beginning in 1971 and graduated in 1976 with a Diplom degree and 1980 as Dr. phil. nat. in the research group of Prof. Dr. Dr. h.c. H. W. Roesky whom je joined in moving to the Georg-August-Universität in Göttingen (Germany) in 1980. From 1981 to 1982 he was a postdoctoral fellow in Prof. R. J. Lagow's group at the University of Texas at Austin. Afterward he again joined Prof. Roesky's group in Göttingen as a scientific teaching assistant. His current research interests are metal-nitrogen-phosphorus chemistry and problems of recycling and waste minimization.

Herbert W. Roesky was born in 1935 in Laukischken. He studied chemistry at the University of Göttingen, Germany, where he obtained his Diplom in 1961 and his Dr.rer.nat. in 1963. After one year of post-doctoral work at DuPoint in Wilmington, DE, he made his habilitation at University of Göttingen. In 1971 he became full professor in Frankfurt, and since 1980 he has been full professor and director of the Institute of Inorganic Chemistry at Göttingen University. During this time he has been visiting professor at Tokyo Institute of Technology and at Kyoto University in Japan. He is member of the Academy of Sciences in Göttingen and of the Academy of Scientists "Leopoldina" in Halle. He obtained many awards e.g. the Dr.rer.nat.h.c. of Bielefeld University, Alfred-Stock-Memorial Award, and French Alexander-von-Humboldt award. More than 550 research publications, articles, patents, and books document his activity.

(iii) chelate complexes where the phosphorus atoms actas donors only. These compounds are listed in Tables 1-3. Tables 4 and 5 contain bis- and trischelate complexes of type iii.

In the first three compounds of Table 2, 2a-c, Li^+ serves as a counterion. Nickel compound 2e consists of a chlorine-bridged dimer, the metals in spirocyclic complexes 2f and g have square-planar environments in analogy to the corresponding diphosphanomethanide complexes.²¹

Most work in the field of diphosphazane chelates of type iii has been performed by the reesearch groups of J. Ellermann, W. Beck, D. S. Payne, and R. B. King. While the former three worked with tetraphenyldiphosphazanes, R. B. King and co-workers introduced tetrafluorodiphosphazane ligands to the metals. More than 100 of these complexes are known thus far. Since they only differ in R' attached to nitrogen, they are comprised under one entry in Tables 3–5, unless X-ray structural information has been obtained. R' most generally is H, Me, Et, Ph, PPh₂, or an alkylcarboxylate moiety CHR"CO₂Me. Complex ligands on the metal atom are summarized as L, and halides and pseudohalides as X.

Group 6 complexes 4b-d (Table 4) are cis-configurated. Reversible one-electron oxidation of 4b (R' = Me) yields a cationic trans complex.^{60b}

Two different kinds of eight-membered ring systems are known, which can be considered as dimers of the formerly listed four-membered species, zwitterionic and chelate compounds, and they are listed in Tables 6 and 7, respectively. Compounds with metal-metal interactions (butterfly and "A-Frame" structures) are not tabulated.

Aside from four- and eight-membered complexes, some five-membered hydrazine derivatives, $8,^{68,69}$ siliconcontaining six-membered chelate complexes $9,^{70}$ and two different kinds of bicyclic η^3 -chelates 10^{71} and $11^{72,73}$ with a phosphazane chain have been synthesized.

Compounds 10 and 11a have been structurally characterized. Indications of complex formation of the ligand in 10 with Co^{2+} and Ni^{2+} have been mentioned, but no details are given.⁷⁴

Six-membered chelate complexes with sulfur⁶⁺, 12, and sulfur⁴⁺, 13, have been reported (see Table 8).

The X-ray structures of 12b, 13a, and 13b have been reported. While the change of oxidation states has only little effect on the S=N bond lengths, the P-N bonds in 13a,b are slightly shorter than a calculated single bond,^{77,78} and the P-N bonds in 12b are significantly shorter, indicating multiple bonding.⁷⁵

B. Cyclophosphazane Complexes

Only dimeric and tetrameric cyclophosphazane moieties have been found to act as chelating ligands, the cyclodiphosphazane in a η^2 fashion and the

			1		
no.	[M]	R	R′	X-ray	ref(s)
la 1b	Ni(Bipy) Ni(Bipy)	SiMe ₃ SiMe ₃	lp N-N — CHCO ₂ -tBu	+	16,17 17

cyclotetraphosphazanes in a η^3 fashion. They are listed in Tables 9 and 10.

Reductive coupling of cyclodiphosphazane moieties with P-Mn σ -bond formation occurs in the reaction of NaMn(CO)₅ with (ClPN-tBu)₂ to yield complex 15. The X-ray structure shows two long and two short Mn-P bonds.^{81b}

Compounds 16b,c,e can be quaternized at the free phosphorus atom with the corresponding alkyl iodides to yield cationic complexes 16g-k; treatment of 16j,kwith nBuLi affords ylidic complexes with insertion of CH₂ into the middle P-M bonds.⁸²

C. Synthetic, Theoretical, and Structural Aspects

The syntheses of the diazaphosphametallidines 1-5and tetraazadiphosphadimetallocines 6c and 7 have been achieved by photochemical or thermal replacement of two monodentate or one labile bidentate ligand from the appropriate metal precursors, e.g.

The other types of complexes described in this section, 8–16, have been prepared in a similar way. While the first reaction sequence represents an oxidation of Ni in the first step and an oxidative [3 + 1] cycloaddition in the second step, the ligand exchange reactions proceed without change of oxidation states. Homoleptic bis-(difluoro)diphosphazane complexes have been synthesized by cocondensation of metal vapor and the ligand at -190 °C, e.g. 5a.

 Table 2. Zwitterionic Four-Membered Heterocycles of

 Type ii

Zwitterionic 6a, b are available by alkane elimination from GaR_3 .

While the electronic structure of 6a, b is best described with gallanate anions and the positive charge delocalized over the P-N-P skeletons, the charge distribution is inverse in the case of 6c.

$$2(Ph_{3}P)AuCI + 2Li^{\dagger}[N(PPh_{2})_{2}]^{-2LCi} \xrightarrow{Ph_{2}P} \xrightarrow{N} Ph_{2} \xrightarrow{Ph_{2}P} \xrightarrow{Ph_{2}} \xrightarrow{Ph_{2}P} \xrightarrow{Ph_{2}} \xrightarrow{Ph_{2}P} \xrightarrow{Ph_$$

The nitrogen atoms in **6c** can serve as donor sites for group 10 metal complexes to yield complexes 7k, l (the X-ray structure of the latter has been reported).^{64b}

X-ray structural analyses of several complexes 3, 4. 7, 8, 10, and 11 have been performed. The P-N bonds of the ligands are in general a little shorter (1.67-1.69 pm) compared to 1.69 pm in HN(PPh₂)₂⁸⁵ and PhN-(PPh₂)₂;⁸⁶ slightly longer bonds have been found in Pd complexes 3an and 4y (172.5 and 169.9 pm), respectively. The metal-phosphorus bond lengths are in the region found in other phosphane complexes. UVphotoelectron spectra of 5a,c,d and 7h have been reported,^{87a} as well as Mössbauer spectra of 7i,j.^{87b} IR spectra of several 3m compounds with different anions X have been discussed.^{48c} The ³¹P NMR shifts of most of the complexes are downfield of the uncomplexed ligands, the effect is decreasing in one group from the light to the heavier metals. While variation of the substituents on nitrogen causes no significant change in the $\Delta\delta$ values, e.g. 3e, p, v (Me vs Et), it is strongly

Table 3. Diphosphazane Chelates of Type iii

<u>no</u> .	ſMI	R		X-rav	ref(s)
20	VCp(CO)-	F	Ma	<u> 11-14</u>	
3h	Cr(CO)	Ph	H. Me. iPr. CH.CO.Me. Ph. C(O)Ph. PPh.		20.23-28d
0.0			PPh ₂ AuCl, AuPPh ₃		20,20 204
	[Cr(CO) ₄		$(\mu - AuPPh_2)_{1/2}]_2$		
3c	Cr(CO) ₃ PPh ₂ NR'PPh ₂	Ph	H, Me		29
3d	Cr(CO) ₄	OR"	Me, Ph		28b-d,30
3e	Cr(CO) ₄	F	Me, Et, Ph		5,31,32a,b
3f	$Cr(CO)_4$	F	Ph		31,32
3g ol	$Cr(PF_2NMe_2)_4$	F DL	Me H Ma - Da i Da CH CO Ma CH i D-CO Ma	+	338,D,34
3n	MO(CO)4	Fn	Γ , Me, nrr, nrr, Γ , Γ , Ω ₂ OO_2 Me, C -1 Γ OO_2 Me, C -H.SMe, $C(\Omega)$ Db, DDb, AuDDb,		18,19,20-280,30-37
			Δ_{11} PPh.		
31	Mo(CO)	Ph	Et	+	35.36
3i	Mo(CO) ₂ PR″ ₃	Ph	H, CH ₂ CO ₂ Me		26,38
3k	$M_0(CO)_2Cp^+$	Ph	CH ₂ CO ₂ Me, CHMeCO ₂ Me, CH-iPrCO ₂ Me, CH ₂ Ph		39
31	Mo(CO)(Cp)Cl	Ph	CH ₂ CO ₂ Me, CHMeCO ₂ Me, CH ₂ Ph		39
3m	Mo(CO) ₄	NHPh	Ph	+	40a,b
3n	Mo(CO) ₄	NR″2	Ph		40a,b
30	Mo(CO) ₄	OR"	Me, Ph		28b,30
3p 9-	$M_{0}(UU)_{4}$	r F	Me, Lt, Pn Me		0,31,328,D
aq an	$MO(CO)_3(\eta^2 - \Gamma \Gamma_2)$ $Mo(CD)(C)(\eta^2 - \Gamma DNMoDF_2)$	r F	Me	<u>ـ</u>	41
or 3a	W(CO).	Ph	H CH_CO_Me CHMeCO_Me PPha AuPPha	т	19 26-282
3t	$W(CO)_{\bullet}Cp^{+}$	Ph	CH ₂ CO ₂ Me, CH-iPrCO ₂ Me		39
3u	W(CO)(Cp)Cl	Ph	CH ₂ CO ₂ Me, CH-iPrCO ₂ Me		39
3v	W(CO)4	F	Me, Et, Ph		5,31,32a,b
3w	Mn(CO) ₃ Br	Ph	CH ₂ CO ₂ Me		26
3x	Mn(CO)Cp	F	Me		43
3y	$Mn(Cp)(\eta^1 - PF_2NMePF_2)$	F	Me		43
3z	Re(CO) ₃ NCO	Ph	H Ma	+	448 44b
388 20h		r Dh	Me H DDL		440 10.20
300	Fe(CO)Cp ² Fe(m ¹ -PF-NMePF-)	F II	11, 1 1 112 Me	+	33a 34 45
3ad	Fe(PFoNMeo)o	F	Me	•	34
3ae	Co(CO)NO	Ph	H		25
3af	Rh(CO)Cl	Ph	CH-iPrCO ₂ Me		26,27
3ag	Rh(Cod)+	OMe	Ph		46
3ah	Rh(Dppe)L ⁺	OMe	Me		46
3ai	$\ln(PPh_3)_2^+$	OMe	Me	,	46
38]	$Ir(PPn_3)_2 CO^+$	UMe DL	Me Ma Dh	Ŧ	40
२०1 २०1	Ni(DF-NMe-)	ЕП ГП	Me, FI		33
3am	NiX.	Ph	Et. Ph		2.48a-c
3an	PdCl ₂	Ph	Et	+	3,36,49
380	PdCl ₂	Ph	iPr, CH ₂ CO ₂ Me, CH-iPrCO ₂ Me,		26,27,50a,b
_	[$(\mu - C_2 H_4 - CHCO_2 Me)_{1/2}]_2$		
3ap	$Pd(C_{6}X_{5})_{2}, X = F, Cl$	Ph			65
38Q		rn	$\frac{1}{(u-C_{2}H)} = \frac{1}{(u-C_{2}H)} = \frac{1}{(u-C_{$		20,27,008,D
307	L Pt(CeFs)2	Ph	и-0214-011002нис/1/212 Н		65
3as	Cu(CN)PPha	Ph	H	+	51
3at	$Cu(PPh_8)_2^+$	Ph	Н	+	51,52
3au	Mo(CO)4	Ph, NH-iPr	iPr	+	53a
3av	Mo(CO)4	OPh	Ph	+	28b-d
38.W		CI Dh	rn (D.		4UD 285 505
38.X 30-1	$M_0(CO)_{3L_2}$	ги ОРЬ	Ma Ph		200,000 28h 50h 53h
3az	Mo(CO) _s Cl(SnCl _s)	Ph	iPr		50b
3ba	W(CO) ₄	Ph	iPr	+	28b-d
3bb	W(CO)	OR″	Me, Ph		28b-d
3bc	W(CO) ₃ I ₂	Ph	iPr		28d,53c
3bd	W(CO) ₃ I ₂	OPh	Me		28b,d,50b,53b
3be		OPh Dh	rn ;D.	+	280,800,830 50b
3DI 3ha	$\mathbf{F}_{\mathbf{C}}(\mathbf{CO})_{\mathbf{s}}$	rn Ph	Et	+	53c
3bh	Fe(CO) ₃	Ph	iPr	•	28b-d
3bi	Fe(CO) ₃	OPh	Me, Ph		28b-d
3bj	Ru(CO) ₃	Ph	Et		53d

Cyclic Phosphazanes and Phosphazenes

Table 3 (Continued)

no.	[M]	R	R′	X-ray	ref(s)
3bk 3bl 3bm 3bn 3bo	$\begin{array}{l} Rh(\mu-Cl_2RhCot)\\ [Rh\mu-Cl\\PdCl_2\\PdR''_2, R'' = Me, Et, iPr\\Pd(\eta^2-L) \end{array}$	OPh OPh OPh OPh Ph	Ph Ph]2 Me, Ph Ph H		28b,50b 28b,50b 50b 50b 53e
3bp	$PtCl_2$	OPh	Me, Ph		50b

Table 4. Spirocyclic Bischelates

no.	[M]	R	R′	X-ray	ref(s)
	VCp	F	Me		22
4b	$Cr(CO)_2$	Ph	H, Me		25,29
4c	Mo(CO) ₂	Ph	H		25
4d	W(CO) ₂	Ph	н		1 9
-4e	Fe(CO)	F	Me		54
4 f	Fe(n ¹ -PF ₂ NMePF ₂)	F	Ме		33a
4g	Rh ⁺	Ph	H, Me, Et, Ph, pTol, CH2CO2Me, CHMeCO2Me, CH-iPrCO2Me		26,27,55-57
4h	Rh(CO)+	Ph	H, Me, Et, Ph, pTol		55,56
4i	RhCl	Ph	Me, Et, Ph, pTol		56
4j	$Rh(\eta^2 - O_2)^+$	Ph	Н	+	55
4k	$Rh\eta^2 - L^+$	\mathbf{Ph}	Н		55
41	Rh ⁺	OMe	Ph		46
4m	$[Rh^{+}(\mu - (PR_{2})_{2}NR')_{1/2}]$	OMe	Ph] ₂		46
4n	Ir+	Ph	H, Me, Ph, pTol		58,59
40	IrCO+	Ph	H, Me, Ph, pTol		59
4p	IrH_2^+ , cis/trans	Ph	pTol		60a
4g	Ir(H)Cl ⁺ , trans	\mathbf{Ph}	pTol		60a
4 r	IrX_2^+	Ph	H		58
4s	$Ir(\eta^2 - L)$	Ph	Н		58
4t	$Ir(\eta^1-PhN(PR_2)_2)^+$	OMe	Me		46
4u	IrPPh ₃ +	OMe	Me		40a
4v	Ni ²⁺	Ph	Ph		48a
4 w	NiX ⁺	\mathbf{Ph}	Ph		42
4x	Pd ²⁺	Ph	Н		21
4y	Pd ²⁺	Ph	Me	+	21
4z	Pt^{2+}	Ph	H, Me		21,58
4aa	$Mo[\eta^{1}-(PR_{2})_{2}NR']_{2}$	Ph	iPr		28b

dependent on the substituents at the metal atoms, e.g. 3s vs 4d or 4n,o,s. High-field shifts have been observed in bis(difluoro)diphosphazane complexes 3e,v and 5e, and in some cationic group 9 and 10 compounds. Selected ³¹P NMR values are listed in Table 11.

In some compounds 4 several ³¹P signals are found due to distorted geometries or nonequivalence of the

Table 6. Zwitterionic Diazatetraphosphadimetallocines

	$\begin{array}{c} Ph_{2} \\ Ph_{2} \\ M \end{array} \xrightarrow{N} Ph_{2} \\ Ph_{2$	
n o	6 [M]	vof (s)
10.		161(8)
6 a	GaMe ₂	63
6b	GaEta	63
60	A11	20 64a h

phosphorus atoms. While protonation of **2f**,**g** to yield $4\mathbf{x},\mathbf{z}$ has only little effect on the chemical shift,²¹ exchange of BPh₄- for Cl⁻ in **4n** causes a high-field shift of 20 ppm, probably due to a geometrical change at the metal atom.⁵⁸ In other ionic compounds the difference found is within the range of 1–3 ppm. A drastic high-field shift of more than 200 ppm has been found in the cyclodiphosphazane complexes 14 and 15: δ (ClPN-tBu)₂ 207.7 ppm, (ClPN-tBu)₂Fe(CO)₃, 14a-10.5 ppm.⁷⁹

Table 7. Eight-Membered Chelate Complexes

			$\begin{bmatrix} M \\ P_2 \end{bmatrix} \begin{bmatrix} M \\ P_2 \end{bmatrix}'$			
			n 7			
no.	[M]	[M]′	R	R'	X-ray	ref(s)
7a	Fe(CO) ₃	[M]	F	Me		54
7b	Fe(NO) ₂	[M]	Ph	н		25
7c	$Rh^+[\eta^2 (PR_2)_2NMe]$	[M]	OMe	Me	+	46
7d	Rh(CO)Cl (X = Cl, F)	(M)	OPh	Ph		28b
7e	$Pd(C_6F_5)_2$	Ag ⁺	Ph	Н		65
7 f	$Pt(C_6F_5)_2$	Ag+	Ph	Н		65
7g	$Ni[\eta^{1}-[(F_{2}P)_{2}NMe]_{2}]$	[M]	F	Me		54
7ĥ	$Ni[\eta^2 - (F_2P)_2NMe]$	[M]	F	Me		54
7i	AuCl	[M]	Ph	H, Me		20,66
7j	Au+	(M)	Ph	H		20,67
7 k	Au+	(M)	Ph	$AuC_{6}F_{5}$		64b
71	Au ⁺	[M]	Ph	Ag(PPh ₃)OClO ₃	+	64b

Table 8. Sulfur-Containing Chelates

	N S N N S N R ₂ P [M] 12	R	N ^S N 2 ^P (M) 13	
no.	[M]	R	X-ray	ref(s)
12a 12b 12c 13a 13b 13c 13d 13e	Cr(CO) ₄ Mo(CO) ₄ W(CO) ₄ Cr(CO) ₄ Cr(CO) ₄ Mo(CO) ₄ Mo(CO) ₄ W(CO) ₄	Ph Ph tBu Ph tBu Ph tBu	+ + +	75 75 76 77,78 76 77,78 76 77,78 76

Table 9. Cyclodiphosphazane Complexes

15

			•	•		
no.	[M]	[M]′	R	R′	X-ray	ref
14a	TiCl		Cl	tBu		79
14b	Fe(CO) ₃		Cl	tBu		79
14c	NiCp ⁺		Cl	tBu		80
15a	Mo(CO)₄	[M]	O-pTol	Ph	+	81a
15b	Mo(CO)4	PtCl ₂	O-pTol	Ph		81a
15c	Rh(CO)Cl	[M]	Cl	tBu		79
15d	Rh(CO)Cl	[M]	OPh	tBu		50b
1 5e	PdCl ₂	[M]	$[\mu - (OCH_2)_2]_{1/2}$	Ph		28d

IV. Metal Bound to Nitrogen

A subdivision has been made concerning the bond order around the metal atoms, section A deals with compounds with bond orders ≤ 1 involving coordinative bonding and section B, with metallacyclophosphazenes with conjugated electron systems.

A. Compounds with Coordinative and Single Bonds to the Metal

The majority of compounds in this section contain a four-membered MN_2P ring. Compounds 17 with trivalent (Table 12) and 18 with pentavalent phosphorus (Table 13) are known as well as metallaspiroheptanes 19 (Table 14). Probable resonance structures of these heterocycles are discussed in section III.C.

Starting from Zn[N(SiMe₃)₂]₂ and dimeric aminoiminophosphanes, spirocyclic λ^3 -compounds 171-n are available with elimination of hexamethyldisilazane. The X-ray structure of 17n shows zinc to have a tetrahedral environment.^{95c}

In addition, one cationic complex $20,^{127}$ available by chloride abstraction with AlCl₃ from 18av, and a λ^5 diiminophosphorane complex 21, which on the basis of spectroscopical data has the depicted formula,⁹⁰ have been synthesized.

Eight-membered dimeric alkali aminoiminophosphinates 22 have been postulated earlier from molecular weight determinations,^{98,107a,128} but seem to be rather

Table 10. Cyclotetraphosphazane Complexes

no.	[M]	R	(R')+	X-ray	ref(s)
16 a	Mn(CO) ₃ +	Me			82
16b	$Cr(CO)_3$	Me			82
16c	Mo(CO) ₃	Me		+	82,83
16d	Mo(CO) ₃	Et			82
16e	W(CO) ₃	Me			82
16f	CoCl+	Me			82
16g	$Cr(CO)_3$	Me	Me		82
16ĥ	$Cr(CO)_3$	Me	CH ₂ CN		82
16i	$Cr(CO)_3$	Me	$CH_2C(O)NH_2$		82
16j	Mo(CO) ₃	Me	Me	+	82,84
16k	W(CO) ₃	Me	Me		82

unlikely in the light of new X-ray structural determinations of 18a and 19a,^{96,97} but this structural feature has been found in the trivalent compounds 22e,d, while the bulkier CPh₃ group results in the formation of the four-membered ring 17k.^{95b}

22c: R = tBu, Ar = 2,4,6-(tBu)_3C_6H_2 d: R = Ad, Ar = 2,4,6-(tBu)_3C_6H_2

A silicon-bridged eight-membered ring 23 has been synthesized, and its structure has been derived from NMR spectroscopical data.¹²⁹

Table 11. Selected ³¹P NMR Shifts

_

no.	compound	δ (ppm)	$\Delta\delta$ (ppm)	ref(s)
	HN(PPh ₂) ₂ ≜L ¹	42.7		25
3b	$Cr(CO)_4L^1$	96	+53.3	25
3h	Mo(CO) ₄ L ¹	70	+27.3	28a
3s	W(CO) ₄ L ¹	42.8	+0.1	28a
3ab	Fe ⁺ (CO)(Cp)L ¹	~90	\sim +47	20
3at	$Cu^+(PPh_8)_2L^1$	51	+8.3	52
4b	$Cr(CO)_2(L^1)_2$	109.7, 90	+67, +47.3	25
4 c	$Mo(CO)_2(L^1)_2$	84.8, 64.3	+42.1, +21.6	25
4 d	$W(CO)_2(L^1)_2$	56.1	+13.4	19
4g	$Rh^+(L^1)_2$	~44	+1	55
4 h	$Rh^+(CO)(L^1)_2$	~37	-6	55
4n	$Ir^+(L^1)_2Cl^-$	29.5	-12.8	58
4n	$Ir^+(L^1)_2BPh_4^-$	9.2	-33.5	58
40	$Ir^+(CO)(L^1)_2$	0.4	-42.3	58
48	$Ir^+\eta^2 - (O_2)(L^1)_2$	-10, -15.4	-52.3, -58.1	58
4x	$Pd^{2+}(L^{1})_{2}$	29.6	-13.1	21
4z	$Pt^{2+}(L^{1})_{2}$	23.0	-19.7	21
7b	$(Fe(NO)_2L^1)_2$	98.5	+55.8	25
3ap	$Pd(C_6F_5)_2L^1$	28.7	-14	65
7e	$[Pd(C_6F_5)_2(L^1)_2Ag^+]$	59.7 (Pd), 61.2 (Ag)	+17, +18.5	65
3ar	$Pt(C_6F_5)_2L^1$	17.1	-25.6	65
7f	$[Pt(C_6F_5)_2(L^1)_2Ag^+]$	47.4 (Pt), 56.2 (Ag)	+4.7, +13.5	65
71	$(Au^{+}L^{1})_{2}$	~79	~+36	20
	LiN(PPh ₂) ₂ ≜LiL ²	41.2		88
2d	$Fe(CO)(Cp)L^2$	45.4	+4.2	20
2e	$(NiClL^2)_2$	57	+15.8	21
2f	$Pd(L^2)_2$	25.5	-15.7	21
2g	$Pt(L^2)_2$	25.0	-16.2	21
68	$(GaMe_2L^2)_2$	41.8	+0.6	63
6b	$(GaEt_2L^2)_2$	66	+24.8	63
6C	(AuL ²) ₂	53.3	+12.1	20
	$EtN(PF_2)_2 \triangleq L^3$	145.3		89
3e	$Cr(CO)_4L^3$	170.7	+25.4	32b
3p	Mo(CO) ₄ L ³	144.8	-0.5	32b
3v	W(CO) ₄ L ³	114.0	-31.3	32b
	MeN(PF ₂)₂≜L ⁴	141.5		32a.89
3e	Cr(CO) L ⁴	168.5	+27	32a
3p	Mo(CO) ₄ L ⁴	144.5	+3	32a
$3\overline{v}$	W(CO)4L4	112.4	-29.1	32a
5a	$Cr(L^4)_3$	180.3	+38.8	54
5c	Mo(L ⁴) ₃	157.3	+15.8	54
5e	W(L ⁴) ₃	125.2	-16.3	54
	PhN[P(OMe) ₂] ₂ ≜L ⁵	142.5		46
3ag	$Rh^+(Cod)L^5$	103.7	-38.8	46
4e	$Rh^+(L^5)_2$	121.2	-21.3	46

		17			
no.	[M]	R	R′	X-ray	ref(s)
17a	Li	2,4,6-(tBu) ₃ C ₆ H ₂	R		90
17b	$AlMe_2$	$2,4,6-(tBu)_{3}C_{6}H_{2}$	R	+	90
17C	AlCl ₂	SiMe ₃	R		91–94
17 d	AlCl ₂	tBu	SiMe ₃	+	91
17e	$AlBr_2$	SiMe ₃	R		91
17f	AlI_2	SiMe ₃	R		91
17g	$SnMe_3$	tBu	R		95a
17h	SnMe ₂ Bu	tBu	R		95a
17i	$SnMe_2Ph$	tBu	R		95a
17j	SnMe ₂ Cl	tBu	R		95a
17k	Li(OEt ₂)	$2,4,6-(tBu)_{3}C_{6}H_{2}$	CPh₃	+	95b

Several cage compounds of Sb, 24,¹³⁰ and Re ([Re] = $\text{Re}(\text{CO})_3$), 25a,¹¹⁷ 25b,^{115,131} 26,¹¹⁸ and 27,¹¹⁸ are known, which contain four-membered MN₂P rings (R = SiMe₃).

The first four compounds have been characterized by X-ray structure analyses, and the structure of **27** is consistent with its NMR spectra.

A clear distinction concerning the charge distribution can be made between $1,5-\eta^2$ bound zwitterionic chelates 28 with a cationic N₃P₂ backbone (Table 15) and anionic $1,5-\eta^2$ and $1,3,5-\eta^3$ complexes 29 (Table 16). In compounds that have not been structurally characterized the hapticity stays uncertain, the only true anionic η^2 complex is dimeric Li salt 291 with a centrosymmetric Li₂N₂ core.¹³⁶

A neutral chelate complex of Cu, 30, is also known.¹⁴⁰

In addition to 29j, the reaction of $Ba[N(SiMe_3)_2]_2$ with the phosphazene precursor leads to an interesting cluster with four Ba atoms, 31, where all metal atoms have significantly different environments.¹³⁸

(methyl groups omitted)

A series of cyclophosphazene complexes 32 has been reported. Although six-membered cyclophosphazenes represent the majority of known compounds, only one complex $32a^{141}$ has been synthesized thus far. It was first believed that it was a π -complex, but subsequent X-ray studies showed the metals to be coordinated through nitrogen only. Table 17 lists the complexes 32 known so far. In addition, poorly characterized CoCl₂ and NiX₂ complexes with two metal centers on one cyclononaphosphazene have been mentioned.¹⁴²

Another bonding mode, η^2 -exocyclic/endocyclic has been found in some amino-substituted cyclophosphazenes 33 (Table 18).

In addition to 32 and 33, various $M(CO)_3$ and $M(CO)_4$ complexes of cyclophosphazenes with cyclic amino substituents have been reported, but no structural assignment has been made.¹⁵⁷

B. Heterocycles with Metal-Nitrogen Multiple Bonds

The compounds summarized in this section can be considered as derivatives of cyclophosphazenes of different ring sizes, where one or two metal fragments replace PR_2 units. As in phosphazene chemistry sixmembered triazadiphosphametallines 34 represent the greatest group of these compounds; they are listed in Table 19.

A compound 35, a formal [2 + 2] addition product of ArN=C=O (Ar = 2,6-iPr₂C₆H₃) to an unknown precursor 34y, [M] = Re(NAr)₂ has been synthesized from 34v and ArN=C=O. Its structure has been proved by X-ray analysis and mass and multinuclear NMR spectroscopy.¹⁶⁶

Table 13. 1,3, $2\lambda^5$,4-Diazaphosphametalletidines

no.	[M]	R	R'	R″	X-ray	ref(s)
18a	Li(Thf) ₂	SiMe ₃	Ph	Ph	+	96,97
18 b	K(Thf) ₄	SiMe ₃	Ph	Ph	+	97
18c	[Rb(Thf)	SiMe ₃	Ph	Ph]2	+	97
18 d	[(Cs	SiMe ₃	Ph	$Ph)_2]_{\infty}$	+	97
18e		SiMe ₃	H	N(SiMe ₃) ₂		98
18f		tBu	Me	SiMe ₃		99
18g		SIMe ₃	Me Ma	SIMe ₃		99
101		SiMo.	Me	Tmpin		98,100,101
181		SiMe	Me	N(SiMea)a		98,100
18k	AlMe	SiMe ₃	Ph	Ph		102
181	AlMeCl	SiMe ₃	Me	N(SiMe ₃) ₂		98
18m	AlPh ₂	SiMe ₃	Ph	N(SiMe ₃) ₂	+	98,103
18n	AlCl ₂	SiMe ₃	Me	$N(SiMe_3)_2$		98,104
180	AlCl ₂	SiMe ₃	Et	1		91
18p		SiMe ₃	$N(S1Me_3)_2$	CI		105
18Q		Silvie ₃	Etin - N = N - NEt			91 01
10r 18e		SiMes	N(SiMea)	N ₂		91
18t		SiMe	Cl	Ci		91
18u	AlBr ₂	SiMe ₃	Br	Br		91
18v	AlI ₂	SiMe ₃	I	I		91
18w	GaMe ₂	SiMe ₃	Ph	Ph		102
18x	$InMe_2$	SiMe ₃	Ph	Ph		102
18y	GeCl ₂	tBu	=S			106
18z	SnMe ₂	tBu Mo	H Ma	BH3 +P-1		95 107a
1088 190b	Snivie ₃	SiMe	N(SiMe_)			1078
1880	SnCl _a	SiMe	Me	N(SiMe ₂) ₂		104.107b.108
18ad	TiCl	SiMes	Me	$N(SiMe_3)_2$		104.107b.108
18ae	TiCl ₃	SiMe ₃	N(SiMe ₃) ₂	CÌ	+	105
18 af	TiCl ₃	SiMe ₃	CCl_3	Cl	+	10 9
18ag	TiCl ₃ (MeCN)	SiMe ₃	Ph	Ph	+	110a
18ah	TiCl ₂ [NPPh ₂ N(SiMe ₃) ₂]	SiMe ₃	Ph	Ph	+	110a
1881	$[11Cl_2(MeCN)]$	$(SIMe_3)_{1/2}$	Ph	Pnj_2 $N(S;M_2)$	+	110a 110b
1085 1901-	$Z_r(Cp)_2^{(meCN)}$	Silvie ₃	л Ч	$N(SiMe_3)_2$ $N(SiMe_3)_2$		1100
18al	$Zr(Cp)_2\Pi$ $Zr(Cp)_2Cl$	SiMe	Ĥ	N(SiMe ₃) ₂		110b
18am	$Zr(Cp)_{2}OTf$	SiMe ₃	Ĥ	$N(SiMe_3)_2$		110b
18an	ZrCl ₃	SiMe ₃	Me	N(SiMe ₃) ₂		111a
18 ao	ZrCl ₃ (Thf)	SiMe ₃	Me	$N(SiMe_3)_2$	+	111a,b
18ap	ZrCl ₃ (OPPh ₃)	SiMe ₃	Me	N(SiMe ₃) ₂		111a
18aq	ZrCl ₈ (MeCN)	SiMe ₃	Ph	Ph	+	112
18ar	Zrula NhCl	Silvie ₃	Pn N(SiMa)	Pn Cl	+	113
1085 18et	Mp(CO)	Silvie ₃	$N(SiMe_3)_2$	OMe		114
18au	Mn(CO)	SiMe	N(SiMe ₃) ₂	OPh	+	114.115
18av	Mn(CO) ₃	SiMe ₃	$N(SiMe_3)_2$	Cl		114
18 a w	Mn(CO) ₃	SiMe ₃	$N(SiMe_3)_2$	Br		114-116
18 ax	Mn(CO) ₄	SiMe ₃	$N(SiMe_3)_2$	Br		114,115
18ay	Re(CO) ₃	SiMe ₃	CH ₂ SiMe ₃	$N(SiMe_3)_2$	+	117
1882	$Re(CU)_2(CN-tBu)_2$	SiMe ₃	CH_2S1Me_3	$N(SiMe_3)_2$		117
1808 1866	$Re(CO)_2[P(OMe)_3]_2$	Silvie ₃	$N(SiMe_{3})$	$(Silvie_3)_2$		117
18bc	Re(CO)	SiMe	=Mn(CO) ₂ Cp	01	+	119
18bd	[Re(CO)₄	SiMes	$(NSiMe_3)_{1/2}$	(NSiMe ₃)1/9]9	+	118
18 be	FeCl ₂	SiMe ₃	N(SiMe ₃) ₂	Cl		105
18 bf	$Ni(\pi - C_3H_5)$	SiMe ₃	$CH_2CH = CH_2$	N(SiMe ₃) ₂		120
18bg	$Pd(\pi-C_3H_5)$	SiMe ₃	CH ₂ CH=CH ₂	$N(SiMe_3)_2$	+	120
18bh	$PtCl(\pi-C_2H_4)$	Me	Me			121
1801 1864	$\Delta \Pi^{\mu} \Pi$ ZnPh(Py)	SiMe-	rn Ph	$N(SIVIC_3)_2$ $N(SiMe_3)_3$	+	101,122,123
18bk	$ZnPh(OPPh_{\bullet})$	SiMe	Ph	N(SiMea)		101,122
18bl	Ce(Cot)	SiMes	Ph	Ph		124
18 bm	Pr(Cot)	SiMe ₃	Ph	Ph		124
18 bn	Nd(Cot)	SiMe ₃	Ph	Ph		124
18bo	Sm(Cot)	SiMe ₃	Ph	Ph		124

Table 14. Bis $(1,3,2\lambda^{\delta},4$ -diazaphospha)metallaspiro[3.3]bicycloheptanes

Table 15. Zwitterionic Chelates with a Cationic N_3P_2 Backbone

Only one authentic example of a $1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8$ tetraazatriphosphametallocine **36a** has been isolated thus far. Its structure has been derived from mass and multinuclear magnetic resonance spectroscopy.¹⁶⁴ The other, **36b**, has been detected in the mass spectrum of a linear ionic precursor.¹⁶⁸ Similar behavior has been found with intermediates in the formation of several compounds **34**.^{165a}

Eight-membered cyclophosphazenes containing two metal atoms 37 are listed in Table 20.

A twelve-membered heterocycle 38 has been found as a byproduct in the synthesis of 35 and was characterized by X-ray analysis. Its genesis can be understood as a topological dimerization of 35, which represents a new reaction type in phosphazene chemistry.¹⁶⁶

The only example of a metallacyclophosphazene, where the metal is not in its formally highest oxidation state, is bimetallic 39 with W^{6+} and W^{5+} , respectively. The X-ray structure shows one N and two Cl bridges and a W-W bonding interaction.¹⁷³

C. Synthetic, Theoretical, and Structural Aspects

Three major types of reactions have found application in the syntheses of diazadiphosphametallidines 17-19 (i) the abstraction of alkali or trimethylsilyl halides from metal halides and the corresponding aminoiminophosphorus precursors, (ii) elimination of a stable hydrocarbon from alkyl- or aryl-substituted metals, and (iii) oxidation of stable or intermediate P^{III} heterocycles, in the latter case with migration of metal or nitrogen bound groups. The attempt of hydrogen chloride elimination led in one case to the formation of a salt with the hitherto unknown bis[(trimethylsilyl)amino]diphenylphosphonium cation.¹¹³

The transition metals forming four-membered N_2 -PM rings have been found limited thus far to group 4 metals and Nb in their highest oxidation states, group 7 metals in the oxidation state +1, and groups 8-12, lanthanoid, and actinoid elements in their most stable oxidation states.

Precursors with a N_3P_2 backbone and metals unlikely to form multiple bonds yield zwitterionic six-membered heterocycles, e.g.¹³⁴ 28g.

$$H_{2}NPPh_{2}NPPh_{2}NH_{2}^{+}CI^{-} + SbCl_{5} \xrightarrow{Ph_{2}P} (7)$$

$$H_{2}NPPh_{2}NH_{2}^{+}CI^{-} + SbCl_{5} \xrightarrow{Ph_{2}P} (7)$$

$$H = N \xrightarrow{Sb} (Cl_{4})$$

$$28a$$

while the lower homologues phosphorus,¹⁷⁴ arsenic¹⁷⁵

Table 16. Zwitterionic Chelates with an Anionic N_3P_2 Backbone

^a The type of complex A or B has been assigned, those in parentheses are tentatively according to electronic properties of the metal atoms.

Table 17. η^n -N-Coordinated Cyclophosphazene Complexes

 $[M] \cdot \eta^n (NPR_2)_x$

no.	[M]	η^n	x	R	X-ray	ref(s)
32a	Cr(CO) ₃	$\eta^{3}-1,3,5$	3	Cl		141
32b	Mo(CO)4	$\eta^{3}-1,3$	4	Me		143
32c	Mo(CO) ₃	η^{3} -1,3,5	4	Me	+	144,145a
32d	W(CO) ₃	η^{3} -1,3,5	4	Me		145a
32e	NiCl ₂	η^{2} -1,5	4	NHMe		145b
32f	$PtCl_2$	$\eta^2 - 1,5$	4	Me	+	146,147
32g	$PtCl_2$	$\eta^{2}-1,5$	4	NHMe	+	148
32h	Mo(CO) ₃	η^{3} -1,3,5	5	Me		145a
32i	W(CO) ₃	η^{3} -1,3,5	5	Me		145a
32j	MnCl+	η^{4} -1,3,7,9	6	NMe_2		142
32k	$Mn(\eta^2 - NO_3)^+$	η^{4} -1,3,7,9	6	NMe_2		142
321	FeCl ⁺	η^{4} -1,3,7,9	6	NMe_2		142
32m	CoCl+	η^{4} -1,3,7,9	6	NMe ₂	+	142,149,150
32n	$Co(\eta^2 - NO_3)^+$	η^{4} -1,3,7,9	6	NMe ₂		142
32o	NiCl+	η4-1,3,7,9	6	NMe_2		142
32p	NiBr ⁺	η4-1,3,7,9	6	NMe_2		142
32q	$Ni(\eta^2 - NO_3)^+$	η^{4} -1,3,7,9	6	NMe_2		151
32r	PdCl ₂	η^{2} -1,5	6	Me	+	151
32s	$PtCl_2$	η^2 -1,5	6	Me		151
32t	CuCl+	η^{4} -1,3,7,9	6	NMe_2	+	152,153
32u	$Cu(\eta^2 - NO_3)^+$	η^{4} -1,3,7,9	6	NMe_2		142
32v	ZnCl+	η^{4} -1,3,7,9	6	NMe_2		142
32 w	$Zn(\eta^2 - NO_3)^+$	η^{4} -1,3,7,9	6	NMe_2		142
32x	$Co(\eta^2 - NO_3)^+$	η^{4} -1,3,7,9	8	Me	+	154

and group 5-7 metals form conjugated systems via several acyclic and cyclic intermediates, e.g.⁴

Instead of the above phosphazenium salt^{176,177} silylated $(Me_3Si)_2N$ —PPh₂—N—PPh₂—NSiMe₃¹³² or alkali salts **29a**,c,e^{133,136} can be employed as precursors for ring formation.

In the case of hydrogen chloride labile amino sub-

Table 18. Complexes of Aminocyclophosphazenes with η^2 -Exo/Endo Bonding

Table 19. 1,3,5,2λ⁵,4λ⁵,6λ^π-Triazadiphosphametallines

₂P^{∕N}>PR; 1| | N, N [M][≤]N

34					
no.	[M]	R	X-ray	ref(s)	
34a	Se*	Ph		158	
34b	SeCl	\mathbf{Ph}	+	136,158,159	
34c	VCl_2	Me		160	
34d	VCl ₂	CF ₃	+	161,162	
34e	VCl_2	Ph	+	163,164	
34f	VCl ₂	$N(C_2H_4)_2O$		165a	
34g	VBr_2	Ph		165b	
34h	$NbCl_2$	Ph		167	
34i	MoCl ₃ (MeCN)	Ph	+	167	
34j	MoCl ₃	4-ClC ₆ H ₄		160	
34k	$MoCl_2(N_3)$	Ph		165c	
341	$MoCl_2(NMe_2)$	Ph		165c	
34n	MoCl ₂ (NEt ₂)	Ph		165c	
340	MoCl ₃	$N(C_2H_4)_2O$		165a	
34p	WF_3	Ph		163	
34q	WCl ₃	Me		160	
34r	WCl ₈ (MeCN)	Ph	+	4,167	
34s	WCl_3	NMe_2		165a	
34t	WCl ₃	$N(C_2H_4)_2O$		165a	
34u	WBr ₃	Ph		163	
34v	ReO_2	Ph		166	
34 w	$ReCl_4$	Ph		163	
34x	ReCl ₄	4-ClC ₆ H ₄		160	

Table 20.

1,3,5,7,2λ^δ,6λ^δ,4,8-Tetraazadiphosphadimetallocines

37						
no.	[Me]	R	X-ray	ref(s)		
37a	SeMe	Ph	+	169		
37b	SeEt	Ph		169		
37c	SePh	Ph		169,170		
37d	[Se(Se-bridge)	Ph]2		169		
37e	VCl ₂	C_2F_5	+	164		
37 f	VCl_2	\mathbf{Ph}		112		
37g	VCl(OSiMe ₃)	Ph	+	171		
37h	WCl ₃ (Thf)	Ph	+	172		

stituents on phosphorus, metal nitride precursors have been employed in the synthesis of 34f,o,s,t with elimination of $NH_4Cl.^{11,165a}$ Different reactivity has been found with iminochlorophosphoranes and $Cl_3V=X$ compounds: While, with $R = C_2F_5$ or Ph, $X = NSiMe_3$, tetraazadiphosphadimetallocines **37e**,**f** are formed via [2 + 2 + 2 + 2]cycloaddition,^{112,164} only one metal is incorporated in the heterocycles **34d**¹⁶¹ and **36a**,¹⁶⁴ with $R = CF_3$, X =NSiMe₃, and **34e**, with R = Ph, X = O, respectively.¹⁶⁴ The solid perfluoroalkyl compounds **34d**, **36a**, and **37e** are the first examples of volatile metallacyclophosphazenes; all others are solids with high melting points.

Ring formation without changes in the environment at phosphorus is paralleled with a low-field shift in the ³¹P NMR spectra as compared to the hypothetical starting materials for most of the compounds. Only with heavier group 1 and 2 metals and in the case of unsaturated compounds $34b^{136,158}$ and eight-membered divanadium compounds $37e-g^{112,164,171}$ high-field shifts have been observed, while ditungsten compound $37a^{172}$ shows normal behavior. Higher electronegativity of the substituents at the metals and increasing atomic number in one group causes a high-field shift in the unsaturated heterocycles 34 and main group compounds. As expected, the lanthanoid and actinoid atoms in 19d-j exert a strong paramagnetic influence on the ³¹P nucleus (Table 21).

This difference in behavior can be rationalized by an inversion of polarization as seen in the following canonical formulas C-E for the four-membered rings of 18 (only one of two resonance forms of **D** is shown).

While rings with transition and group 13–16 metals in high oxidation states are best represented by resonance structure C, E is the most likely form for group 1 and 2 metals. This is also valid for sixmembered chelates 28 and 29. No assignment can be made for manganese and rhenium carbonyls 18at-bd, and group 10 complexes 18bf-bh might be represented best by resonance structure **D**, as well as lanthanoid and actinoid chelates 19d-k. X-ray structure determinations have been carried out for several complexes 17-19. No significant trend can be seen in the P-N and M-N bond distances. The P-N distances have been found pairwise almost equal between 158–162 pm in the range of P-N bonds in cyclic phosphazenes.¹⁷⁹ The M-N distances are also pairwise equal, lying in between single and coordinative bonds. One exception has been found in Sm spirocycle 19f, where each ring contains one short (ca. 239 pm) and one long bond (ca.

250 pm), which are representative of Sm–N single and coordinative bonds.⁹⁶

The P-N bonds in P_2N_3 chelates 28 and 29 have been found in the same range of ca. 160 pm, in contrast to $H_2NPPh_2NPPh_2NH_2^+Cl^-$, where the terminal bonds are longer (ca. 164 pm) and the central bonds are shorter,^{180a} and to Me₃SiN=PPh₂-N=PPh₂-N(SiMe₃)₂, with alternating short and long bonds.¹³²

Several resonance structures can be formulated for the unsaturated heterocycles 34-38 exemplarily shown for six-membered rings (one possible resonance form G' is omitted).

The P-N bonds adjacent to the metal center in the structurally characterized compounds 34d,e,i,r have been found to be longer than those in opposition and the M-N bonds are shorter than calculated M-N double bonds, thus favoring the canonical structure F. Ab initio SCF calculations performed on 34d (R = CF₃, [M] = VCl₂) by M. Ehrig and R. Ahlrichs¹⁶² show the electronic structure of 34d to harmonize best with canonical form I with tetravalent P⁺ and divalent N⁻ atomic states. The nitrogen lone pairs are partially delocalized into low-lying orbitals of neighboring atoms, additional stabilization is effected by strong Coulomb interactions. As in the case of phosphazenes, no aromaticity can be attributed to these heterocycles.

Eight-membered dimetallacyclotetraphosphazene 37g represents one of the rare examples of a planar eightmembered ring whose structure has been determined.¹⁷¹

V. Heteroelements Other than Metals in the Ring Skeleton

This chapter can be subdivided into two parts, the heteroelement replacing nitrogen adjacent to the metal in phosphazene units and the heteroatomic group being away from the metal. Only compounds where an unsaturated system remains intact have been included.

A. Metal Bound to One Element Other than Nitrogen

Only two types of oxygen-containing metallaheterocycles have been synthesized so far (40 and 41). The X-ray analyses of both suggest that the oxygen atom acts as a donor, thus leading to species with metalnitrogen double bonds.

The eight-membered system 40a is isoelectronic with the vanadium compound 37f, the Ti=N bonds of

no.	compound	δ (ppm)	<u>Δδ (ppm)</u>	ref(s)
	$Me_{3}SiN = P - N(SiMe_{3})_{2} \neq L^{1}SiMe_{3}$	325.5		91
17c	AlCl ₂ L ¹	279.3	+53.8	91,93
	M. CINLEDDL NICIMA) AT 2	7.0		00
190	$Me_3Sin = F F n_2 N(Sin e_3)_2 = L^2$ I iI 2(The)_	1.0	±1 9	00
108	$L_{1}L_{1}^{-}(1 111)_{2}$	9.4 8.6	+1.0	90
19a 18h	$KI_2(Tbf)_2$	4 1	-3.5	97
184	(Cal.3)	10	-6.6	97
1899	$TiCl_{a}L^{2}(MeCN)$	25.0	+18.4	110a
1880	$ZrCl_{0}L^{2}(MeCN)$	38.8	+31.2	112
19e	$NdCl(L)_{2}^{2}$	-163.9	-171.5	126
19f	$[SmI_2(L^2)_2]^-$	70.6	+63.0	96
19h	$\mathrm{ThCl}_2(\mathrm{L}^2)_2$	17.4	+9.8	126
19j	$\mathrm{UCl}_2(\mathrm{L}^2)_2$	-230.4	-238.0	126
19k	$\mathrm{UO}_2(\mathrm{L}^2)_2$	42.9	+35.3	126
	MasiN=P(Ma)N(SiMas)-NHSiMas#L ³ H	63		104
180	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	39.0	+26.6	98
10g 19n		34.4	+28.0	98
1800	SnCl-L ³	39.6	+33.3	104
18ad	TiCl ₃ L ³	24.4	+18.1	104
18an	$ZrCl_{3}L^{3}$	25.6	+19.3	111a
				104
10	Me ₃ SiN≕P(Ph)N(SiMe ₃)₂NHSiMe ₃ ≏L ⁴ H	2.2		104
18m		27.9	+25.7	98
1801		20.7	+24.0	101,122
196	$\Sigma \Pi(L^2)_2$	24.1	T22.0	122
	(Me₃SiNPPh₂)₂NH≜L⁵H	11.1		132
29a	LiL ⁵	11.3	+0.2	136
29c	NaL ⁵	5.9	-5.4	136
29e	KL ⁵	0.7	-10.6	136
28a	AlMe ₂ L ⁵	23.4	+12.3	133
28c	GaMe ₂ L ⁵	22.0	+10.7	133
28d	InMe ₂ L ⁵	17.6	+6.3	133
281		17.6	+6.3	135
28 K	ZnN(SIMe ₃) ₂ L ^o	20.8	÷9.0	135
	[Me₃SiNP(NMe₂)₂]₂NH≜L ⁶ H	17.4		136
29Ь	LiL ⁶	17.2	-0.2	136
29d	(NaL ⁶) ₂	9.8	-7.6	136,137
29f	(K L ⁶)∞	6.4	-11.0	136,137
29h	(CsL ⁶)∞	3.3	-14.1	136
29i	$Ca(L^6)_2$	18.7	+1.3	137
29j	$Ba(L^6)_2$	5.2	-12.2	138
28b	AlMe ₂ L ⁶	23.1	+5.7	133
28f	$\ln Me_2 L^{\circ}$	20.3	+2.9	133
28h	SD(UAc) ₂ L°	25.6	+8.2	1340
	(HNPPh ₂) ₂ NH≜L ⁷ H ₃	17.7		178
34b	SeClL ⁷	12.5	-5.2	136,158
34e	$\mathrm{VCl_2L^7}$	43.7	+26.0	163,164
34i	MoCl ₃ L ⁷	44.6	+26.9	167
34k	$MoCl_2(N_8)L^7$	30.0	+12.3	165c
34n	$MoCl_2(NEt_2)L^7$	24.7	+7.0	165c
34p	WF ₃ L ⁷	22.5	+4.8	163
34r		39.2	+21.5	4
34u		43.8	+26.1	163
34W	reull'	46.2	+28.5	163
	Me₃SiN=PPh₂N(SiMe₃)₂≜L ⁸ (SiMe₃)₃	7.6		168
37a	(SeMeL ⁸) ₂	33.6	+26.0	169
37c	(SePhL ⁸) ₂	21.7	+14.1	169
37 f	$(\mathrm{VCl}_2\mathrm{L}^8)_2$	-10.2	-17.8	112
37g	$[VCl(OSiMe_3)L^8]_2$	-12.6	-20.2	171
37h	$(WCl_3L^8)_2$	36.7	+29.1	172

Table 21. Selected ³¹P NMR Shifts

40a-4MeCN are among the shortest known so far.¹¹² While the synthesis of 40a-c proceeds straightforward from the appropriate metal halide and a silvlated phosphinic acid imine,^{112,180b} the synthesis of 41 proceeds in low yields from molybdenum oxide halides and a N₃P₂ acyclic precursor via formal loss of NH₄Cl. Surprisingly, the ³¹P NMR spectrum shows only one signal for the two sets of inequivalent phosphorus atoms.¹⁸¹ Several chromium tetracarbonyl complexes with CPNP ligands have been synthesized giving fivemembered C,P-chelates.²⁴

B. Heteroelements Nonadjacent to the Metal

A subdivision can be made between heteroatoms replacing phosphorus and (a group of) heteroatoms replacing nitrogen opposite to the metal in the six-

Table 22. Conjugated $1,3,5,2\lambda^5,4\lambda^n$ -Triazaphosphametallines

		Ph ₂ P C C C C C C C C C C C C C C C C C C C	1	
no.	[M]	R	X-ray	ref(s)
42a	Se*	Ph		158
42b	SeCl	Ph	+	136,158,182
42c	SeC1	C ₆ H ₄ -pCF ₃	+	160
42d	SeCl	C ₆ H ₄ -mCF ₃		160
42e	TeCl(Py)	C ₆ H ₄ -pCF ₃	+	113
42f	[Mo(0)Cl	Ph] ₂		183
42g	MoCl ₂ O-tBu	Ph		160
42ĥ	ReO ₂	Ph		166
42i	ReO_2	C ₆ H ₄ -pCF ₃	+	166

....

Table 23. Non Conjugated 1,3,5, $2\lambda^5$, $4\lambda^n$ -Triazaphosphametallines

	43						
no.	[M]	R	R′	R″	n	X-ray	ref
43a	Se	Ph	42a	_	1	+	158
43b	$TiCl_2$	Ph		tBu	1		183
43c	$Pt(PPh_3)_2$	Ph		SiMe ₃	1		182
43d	$Pt(PPh_3)_2^+$	Ph	H	H	1	+	182
43e	Pt	Me	Me	Me	2		184

membered rings, 34. The first group consists of conjugated, 42, and nonconjugated triazaphosphametallines, 43, which are listed in Tables 22 and 23.

The X-ray structure determinations of 42b,c,e,i show the rings being essentially planar. Compound 42e contains one of the rare examples of a Te—N double bond.¹¹³ The ³¹P NMR spectra of 42b-h show significant low-field shifts compared to the starting materials. Reduction of 42b with SbPh₃ in CH₂Cl₂ affords a species giving a persistent ESR signal, 42a. Its electronic structure is best described with a positive charge on phosphorus and the negative charge and the unpaired electron delocalized over the rest of the ring.¹⁵⁸

Unlike its sulfur congener, radical **42a** dimerizes in hot MeCN not by forming a Se–Se bond, instead a Se–N bond is obtained leaving **43a**, whose X-ray structure shows both rings nonplanar.¹⁵⁸ Due to mechanistic reasons, structure **43b** is favored over isomers with the tBu group at one of the other nitrogen atoms,¹⁸³ as it is seen in **43c**, which can be cautiously hydrolized to yield cationic **43d**, whose X-ray structure has been determined with Cl⁻ as an anion. The ring adopts a half-boat conformation with Pt being distorted square planar.¹⁸²

A somewhat greater variety of heteroatoms has been found able to replace the nitrogen opposite to metal. Starting from a bis(iminophosphoranyl)methane a series of nonconjugated diazadiphosphametallines 44 and 45 has been synthesized (Table 24).

The ring closure causes a downfield shift of the ³¹P NMR signals in 44 compared to the starting material,

	$\begin{bmatrix} H_2 \\ Ph_2 P & PPh_2 \\ H & H \\ N & M \end{bmatrix}_n$	Pi pTol ⁻	H ₂ PP N [M] 45	ħ₂ `pTol
no.	[M]	n	X-ray	ref(s)
44a	Ge(N ₈) ₂	1		185
44 D	GeCl ₂	1		185
44c	Ge	2		185
44d	SeCl ₂	1		186
44e	TeCl ₂	1		186
44f	VCl ₂ (Py) ₂ ⁺	1	+	113
44g	WF4	1		186
44ĥ	WCL	1		186
44i	OsO ₂ (OSiMe ₃) ₂	1		187
45a	Rh(CO) ₉ +	-		188a.h
45b	RhCod+			188a,b

the effect is stronger in the transition metal compounds 44f-i. The X-ray structure of 44f·Cl⁻ shows the ring being nonplanar.¹¹³

Compound 44h can be dehydrohalogenated with Dbu to yield the conjugated heterocycle 46.

The delocalization causes a further downfield shift in the ³¹P NMR spectrum of 46 compared to that of 44h.¹⁸⁶

Formal replacement of nitrogen by a sulfodiimide unit leads to eight-membered heterocycles 47.

The X-ray structure of **47a** shows a distorted eightmembered ring with considerable multiple-bond participation in the W-N bonds.¹⁸⁹

Compound 48a can be considered as an "inverse cryptand" with one metal in a high oxidation state and one in a medium oxidation state. The structure has been confirmed by mass and ¹⁹F and ³¹P NMR spectroscopy.¹⁹⁰

A nine-membered ring 48b with a distorted ring geometry is available from a bissilylated bis(iminophosphoranyl)ethane and NbCl₅ in Thf. The oxygen probably arose from solvent cleavage. The Nb–N bonds show partial multiple bonding.^{191a}

Five-membered heterocycles containing carbon, 49a-c, have been generated by trapping the intermediate of the reaction of dimethylzirconocene with a *P*-chloroiminophosphane with nitriles.^{191b} The cyclic structure is consistent with NMR spectra.

VI. Metal Bound to Phosphorus and Nitrogen

Only a few cycles known so far have metal fragments neighboring phosphorus and nitrogen atoms. Two Ni⁰ complexes **50a**,**b** have been reported where the ligand Me₃SiN=PN(SiMe₃)₂ has been formulated as π bonded.^{16,17} In analogy to other ligands with heteropolar double bonds, e.g. hexafluoroacetone¹⁹² and from the X-ray structure data of **50a** (Ni-P \approx 223 pm, Ni-N \approx 191 pm, and P-N \approx 165 pm),¹⁶ a three-membered ring as depicted with Ni²⁺ seems to be more likely.

J.-P. Majoral and co-workers have investigated reactions of zirconocene compounds with iminophosphanes^{110b,193,194} resulting, via hydride or methanide migration from Zr to P, in azaphosphazirconiridines 51 listed in Table 25.

The X-ray structure of $51b^{194}$ and the P-H coupling constants of 51b-g are consistent with three-membered rings instead of open-chain compounds.^{110b,194} Compounds 51e-g have been generated by chlorine exchange in 51b.^{110b,194}

While tetraphenyldiphosphazane reacts with gallium trialkyls to form symmetric eight-membered heterocycles **6a,b**, a different behavior has been found with aluminum trialkyls and gallium trimethyl, the latter forming both isomers. Zwitterionic 1,4,2,5,3,6-diaza-diphosphadimetallines **52a**-c are formed; the structure has been proven by ¹H and ³¹P NMR spectroscopy and an X-ray analysis for **52a**, which, from bond lengths, favors the depicted charge separation over coordinative bonds and a P=N double bond.^{63,195}

Table 25. Three-Membered P-N-Zr Heterocycles

$\begin{array}{c} R \\ R' \\ Z' \\ CP_2 \\ X \end{array}$						
			51			
no.	Х	R	R′	R″	X-ray	ref(s)
51a	Me	(Me ₃ Si) ₂ N	Me	SiMe ₃		110b
51b	Cl	(Me ₃ Si) ₂ N	H	SiMe ₃	+	110b,193,194
51c	Cl	(Me ₃ Si)tBuN	н	tBu		110b
51d	Cl	Tmpip	Η	SiMe ₃		110b
51e	(NCMe) ⁺	(Me ₃ Si) ₂ N	н	SiMe ₃		110b,194
51 f	OTf	(Me ₃ Si) ₂ N	Н	SiMe ₃		110b,194
51g	N ₃	(Me ₃ Si) ₂ N	H	SiMe ₃		110b

Similar six-membered rings 53a,b are available by insertion of nitrenes into the Pt-P bond of $(Ph_3P)_2$ - $Pt(\eta^2-C_2H_4)$ with migration of a phenyl group¹⁹⁶ and by insertion of a 1*H*-1,2,4,5-triazaphosphole into a Pt-Cl bond of $(Et_3P)_2PtCl_2$.¹⁹⁷

A five-membered heterocycle 54 is formed when a 2H-1,2,4,5-triazaphosphole is employed.

The structures of these platinum heterocycles have been assigned unambigously by multinuclear NMR spectroscopy.¹⁹⁷

Three-membered MNP chelates 55 and 56 as part of a polycyclic system are available from tetracyclic tetraazaphosphoranes and bicyclic dioxaazaphosphoranes (Table 26).

The X-ray analyses of 55a-c show the complexed P-N bond to be significantly longer than the other three; in the ³¹P NMR spectra a downfield shift of ca. 10 ppm is observed compared to the starting materials indicating pentacoordinated phosphorus.^{198a} Long P-N bonds

and short M-P bonds have also been found in the complexes 56a, b.^{199d}

Some compounds containing Fe–Fe bonds 57–60, where P–N units act as bidentate ligands with partial covalent bonds to the metal atoms ([Fe] = $Fe(CO)_3$), have been synthesized.

All compounds have been characterized by X-ray analysis; 58 and 59 have also been characterized by ¹H and ³¹P NMR spectroscopy. The long P–N bond in 57^{200} and the short P=N bonds in 58, 59,²⁰¹ and 60^{202} (<160 pm) make the bond orders likely as depicted.

K. V. Katti and R. G. Cavell have described fivemembered phosphanomethylene complexes of types 61 and 62. They are listed in Table 27.

All compounds have been characterized by elemental analyses and multinuclear magnetic resonance spectroscopy; additionally compound **62f** has been investigated by X-ray diffraction.²⁰⁶

Complexes 61 contain no group R attached to nitrogen and a covalent M-N bond. The M-N bonds in 62 have to be formulated as coordinative bonds.

A distorted tricyclic structure has been found in the lithiation reaction of (phenylamino)diphenylphosphane with nBuLi in Et₂O. The P–N bond distances of **63** lie between single- and double-bond lengths, and the Li–N and Li–P separations are in a range found with similar compounds.²⁰⁸

Table 27. Five-Membered Chelates with P and N Atoms Bonded to the Metal

An interesting tricyclic system 64 has been synthesized from $CoCl_2$ and $LiN(PPh_2)_2$ in an unexpected oxidative scrambling of the P_2N chain.

In contrast to the metallacyclophosphazenes 34 with a MN_3P_2 backbone, the X-ray structure of 64 shows the six-membered CoP_3N_2 ring being nonplanar.²⁰⁹

VII. Applications and Outlook

This article covers the development of cyclic main group and transition metal containing phosphazanes and phosphazenes. Main emphasis has been put upon synthetic, structural, and NMR spectroscopical aspects. As pointed out in the introduction, the variety of compounds might imply some technical use.

An in situ mixture of the starting materials of complex 18bf, Ni(π -C₃H₅)₂, and (Me₃SiN=)₂PN(SiMe₃)₂ catalyses polymerization of ethene with activities of ca. 1000 mol of ethene per mole of catalyst.¹²⁰ Similarly, mixtures of the diiminoaminophosphorane and Ni⁰ complexes with cyclic polyene ligands catalyze polymerization of α -olefins to yield 2, ω -polymers.²¹⁰

Rh complex **3af** has been found active in the catalysis of hydrogenation and hydroformylation reactions.²⁶

Several complexes 3h,k,l,s,t,u,w,af,ao,aq and 4gbuilt up from a $[M]P_2$ moiety serving as a protecting group for asymmetric amino acids have been used in asymmetric syntheses of optically active natural substances, e.g. annelation of amino acids.^{26,27,39,50} "Cisplatinum" is known having antitumor activities, several

Cyclic Phosphazanes and Phosphazenes

Pt chelates in this article fulfill this requirement and might be useful in therapy.

Metallacyclophosphazenes 34i,r can be converted into phosphazene polymers with metals in the backbone with average molecular weights of ca. 24 kDa (Mo) and 34.5 kDa (W).

Group 13 (Al, Ga, In) chelates might serve as singlesource precursors for the generation of III/V semiconductors.

Further studies will be directed toward the synthesis of new ligand systems and the incorporation of other metals, e.g. rare earth metals. The application of these heterocycles in material science, catalysis, and biochemistry is another challenging target for the future.

VIII. Acknowledgments

Generous support by the Deutsche Forschungsgemeinschaft, the Hoechst AG, the Fonds der Chemischen Industrie, and the VW Foundation is gratefully acknowledged. Dipl-Chem. T. Belgardt is thanked for the graphics.

IX. References

- (1) Rose, H. Ann. Phys. [2] 1832, 24, 109-165.
- (2) Ewart, G.; Payne, D. S.; Porte, A. L.; Lane, A. P. J. Chem. Soc. 1962, 3984-3990.
- (3) Ewart, G.; Lane, A. P.; McKechnie, J.; Payne, D. S. J. Chem. Soc. 1964, 1543-1547.
- (4) Roesky, H. W.; Katti, K. V.; Seseke, U.; Witt, M.; Egert, E.; Herbst, R.; Sheldrick, G. M. Angew. Chem. 1986, 88, 447-448; Angew. Chem., Int. Ed. Engl. 1986, 25, 477-478.
- (5) King, R. B. Acc. Chem. Res. 1980, 13, 243-248.
- (6) Haiduc, I.; Silaghi-Dumitrescu, I. Coord. Chem. Rev. 1986, 74, 127-270.
- Allcock, H. R.; Desorcie, J. L.; Riding, G. H. Polyhedron 1987, 6, (7) 119-157.
- Scherer, O. J. Nachr. Chem. Tech. Lab. 1984, 32, 582-585
- (9) (a) Scherer, O. J. Angew. Chem. 1985, 97, 905-924; Angew. Chem., Int. Ed. Engl. 1985, 24, 924-943. (b) Nifant'ev, E. F.; Teleshev, A. T.; Blokhin, Y. U. Usp. Khim. 1987, 56, 558-585; Russ. Chem. Rev. (Engl. Trans.) 1987, 56, 326–342.
- (10) Roesky, H. W. In Rings, Clusters and Polymers of Main Group and Transition Elements; Roesky, H. W., Ed.; Elsevier: Amsterdam, 1989, pp 369-408.
- Witt, M.; Roesky, H. W. Polyhedron 1989, 8, 1736-1741.
- (12) Roesky, H. W. Polyhedron 1989, 8, 1729-1731.
- (13) Roesky, H. W. Synlett 1990, 651-659.
- (14) Roesky, H.W. In The Chemistry of Inorganic Ring Systems; Studies in Inorganic Chemistry; Steudel, R., Ed.; Elsevier: Amsterdam, 1992; Vol. 14, pp 255-270.
- (15) Plenio, H.; Witt, M.; Edelmann, F. T.; Henkel, T.; Noltemeyer, M.; Pauer, F.; Stalke, D.; Sheldrick, G. M.; Roesky, H. W. Phosphorus Sulfur 1987, 30, 421–424.
- Scherer, O. J.; Walter, R.; Sheldrick, W. S. Angew. Chem. 1985, 97, (16)525-527; Angew. Chem., Int. Ed. Engl. 1985, 24, 525-526. (17) Scherer, O. J.; Walter, R.; Bell, P. Chem. Ber. 1987, 120, 1885-1890.
- (18) Ellermann, J.; Wend, W. J. Organomet. Chem. 1985, 281, C29-
- (19) Ellermann, J.; Wend, W. Nouv. J. Chim. 1986, 10, 310-313. (20) Ellermann, J.; Wend, W. Z. Anorg. Allg. Chem. 1986, 543, 169-185.
- (21) Schmidbaur, H.; Lauteschläger, S.; Milewski-Mahrla, B. J.
- (21) Schmidbadd, H., Latteschager, S., Milewski-Mainia, D. C. Organomet. Chem. 1983, 254, 59-68.
 (22) King, R. B.; Chen, K.-N. Inorg. Chim. Acta 1977, 23, L35-L36.
- (23) Ellermann, J.; Gruber, W. H. Z. Naturforsch. B 1973, 28, 310-313.
- (24) Weber, L.; Wewers, D. Chem. Ber. 1984, 117, 3331-3339.
- (25) Ellermann, J.; Wend, W. J. Organomet. Chem. 1983, 258, 21-34.
- (26) Lednor, P. W.; Beck, W.; Fick, H.-G.; Zippel, H. Chem. Ber. 1978, 111, 615-628
- (27) Lednor, P. W.; Beck, W.; Fick, H.-G. J. Organomet. Chem. 1976, 113, C19-C21.
- (a) Andrews, G. T.; Colquhoun, I. J.; McFarlane, W. Polyhedron (28)1983, 2, 783-790. (b) Balakrishna, M. S.; Prakasha, T. K.; Krishnamurthy, S. S. Proc. 1st Indo-Sov. Symp. Organomet. Chem. 1988, 1989, 205-211. (c) Balakrishna, M. S.; Prakasha, T. K.; Krishnamurthy, S. S.; Siriwardane, U.; Hosmane, N. S. J. Organomet. Chem. 1990, 390, 203–216. (d) Balakrishna, M. S.; Prakasha, T. K.; Krishnamurthy, S. S. Phosphorus, Sulfur Silicon 1990, 49/50, 409-412.

- (29) Blagg, A.; Carr, S. W; Cooper, G. R.; Dobson, I. D.; Gill, J. B.; Goodall, D. C.; Shaw, B. L.; Taylor, N.; Boddington, T. J. Chem. Soc., Daiton Trans. 1985, 1213-1221.
- (30) Brown, G. M.; Finholt, J. E.; King, R. B.; Bibber, J. W.; Kim, J. H. Inorg. Chem. 1982, 21, 3790-3794.
- (31) King, R. B.; Lee, T. W. J. Organomet. Chem. 1980, 190, C17-C20. (32) (a) King, R. B.; Lee, T. W. Inorg. Chem. 1982, 21, 319-329. (b) Johnson, T. R.; Nixon, J. F. J. Chem. Soc. (A) 1969, 2518-2520.
- (33) (a) King, R. B.; Chang, M. Inorg. Chem. 1979, 18, 364–368. (b) Chang, M.; Newton, M. G.; King, R. B. Inorg. Chim. Acta 1978, 30, L341–L342.
- (34) King, R. B.; Chang, M.; Newton, M. G. J. Organomet. Chem. 1985, 296, 15-30.
 - (35) Payne, D. S.; Walker, A. P. J. Chem. Soc. (C) 1966, 498-499.
 - (36) Payne, D. S.; Mokuolu, J. A. A.; Speakman, J. C. J. Chem. Soc.,
 - Chem. Commun. 1965, 599. (37) Gray, G. M.; Kraihanzel, C. S. J. Organomet. Chem. 1982, 238,
 - 209-222.
 - (38) Blagg, A.; Cooper, G. A.; Pringle, P. G.; Robson, R.; Shaw, B. L. J. Chem. Soc., Chem. Commun. 1984, 933-934
 - (39) Fick, H.-G.; Beck, W. J. Organomet. Chem. 1983, 252, 83-93
 - (40) (a) Chen, H.-J.; Tarassoli, A.; Haltiwanger, R. C.; Allured, V. S.; Norman, A. D. Inorg. Chim. Acta 1982, 65, L69-L70. (b) Tarassoli, A.; Chen, H.-J.; Thompson, M. L.; Allured, V. S.; Haltiwanger, R. C.; Norman, A. D. Inorg. Chem. 1986, 25, 4152-4157.
 - (41) King, R. B.; Shimura, M.; Brown, G. M. Inorg. Chem. 1984, 23, 1398-1404.
 - (42) King, R. B.; Newton, M. G.; Gimeno, J.; Chang, M. Inorg. Chim. Acta 1977, 23, L35-L36.
 - (43) King, R. B.; Gimeno, J. Inorg. Chem. 1978, 17, 2396-2400.
 - (44) (a) Steil, P.; Nagel, U.; Beck, W. J. Organomet. Chem. 1989, 366, 313-331.
 (b) King, R. B.; Lee, T. W.; Kim, J. H. Inorg. Chem. 1983, 22, 2964-2967
 - (45) Chang, M.; King, R. B.; Newton, M. G. J. Am. Chem. Soc. 1978, 100, 998-999.
 - (46) Mague, J. T.; Lloyd, C. L. Organometallics 1988, 7, 983-993.
 - (47) Kuhn, N.; Winter, M. J. Organomet. Chem. 1982, 229, C33-C36.
 - (48) (a) Seidel, W.; Alexiev, M. Z. Anorg. Allg. Chem. 1978, 438, 68-74.
 (b) Seidel, W. Z. Chem. 1985, 25, 411. (c) Aleksiev, M. Koord. Khim. 1982, 8, 1112-1116; Sovj. J. Coord. Chem. 1982, 8, 593-597.
 - (49) Mokuolu, J. A. A.; Payne, D. S.; Speakman, J. C. J. Chem. Soc., Dalton Trans. 1973, 1443-1445.
 - (50) (a) Trampisch, H.; Beck, W. Z. Naturforsch. B 1983, 38, 365-369. (b) Krishnamurthy, S. S. Proc. Indian Acad. Sci., Chem. Sci. 1990, 102, 283-290.
 - (51) Ellermann, J.; Knoch, F. A.; Meier, K. J.; Moll, M. J. Organomet. Chem. 1992, 428, C44-C52.
 - (52) Ellermann, J.; Knoch, F. A.; Meier, K. J. Z. Naturforsch. B 1991, 46, 1699-1705.
 - (a) Hill, T. G.; Haltiwanger, R. C.; Prout, T. R.; Norman, A. D. Inorg. Chem. 1989, 28, 3461-3466. (b) Balakrishna, M. S.; Krishnamurthy, S. S.; Manohar, H. Organometallics 1991, 10, 2522-K. G. Joseffeld, E. C.; Engel, D. W.; Moodley, K. G. Acta Crystallogr. Sect. C. 1988, 44, 80–82. (d) Engel, D. W.; Moodley, K. G.; Subramony, L.; Haines, R. J. J. Organomet. Chem. 1988, 349, 393-403. (e) Fornies, J.; Navarro, R.; Sicilia, V. Organome-tallics 1988, 7, 2659–2665.
 - (54) King, R. B.; Gimeno, J. Inorg. Chem. 1978, 17, 2390-2395.
 - (55) Ellermann, J.; Hohenberger, E. F.; Kehr, W.; Pürzer, A.; Thiele, G. Z. Anorg. Allg. Chem. 1980, 464, 45–66.
 - (56) Ellermann, J.; Szucsányi, G. Z. Anorg. Allg. Chem. 1985, 520, 113-119.
 - Ellermann, J.; Szucsányi, G.; Wilhelm, E. Chem. Ber. 1985, 118, (57)1588-1599.
 - (58) Ellermann, J.; Mader, L. Z. Naturforsch. B 1980, 35, 307-315.
 - (59) Ellermann, J.; Geibel, K.; Mader, L.; Moll, M. Chem. Ber. 1981, 114, 2322-2335.
 - (a) Ellermann, J.; Mader, L.; Geibel, K. Z. Naturforsch. B 1981, (60) 36, 571-577. (b) Dobson, I. D.; Taylor, N.; Tipping, L. R. H. Anal. Chem. Symp. Ser. 1986, 25, 61-76.
 - (61) King, R. B.; Gimeno, J. J. Chem. Soc., Chem. Commun. 1977, 142-143.
 - (62) King, R. B.; Goel, S. Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 139–143.
 - (63) Schmidbaur, H.; Lauteschläger, S.; Milewski-Mahrla, B. Chem.
 - Schmidbaur, I., Laureschager, S.; Millewski-Mahria, B. Chem.
 Ber. 1983, 116, 1403-1410.
 (a) Schmidbaur, H.; Schnatterer, S.; Dash, K. C.; Aly, A. A. M. Z.
 Naturforsch. B 1983, 38, 62-66. (b) Usón, R.; Laguna, A.; Laguna, M.; Gimeno, M. C.; Jones, P. G.; Fittschen, C.; Sheldrick, G. M. J.
 Chem. Soc. Chem. Commun. 1995 500 510 (64)Chem. Soc., Chem. Commun. 1986, 509-510.
 - (65) Usón, R.; Forniés, J.; Navarro, R.; Cebollada, J. I. J. Organomet. Chem. 1986, 304, 381-390.
 - Schmidbaur, H.; Wagner, F. E.; Wohlleben-Hammer, A. Chem. (66) Ber. 1979, 112, 496-500.
 - Usón, R.; Laguna, A.; Laguna, M.; Fraile, M. N.; Jones, P. G.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1986, 291-296. (67)
 - Johannsen, G.; Stelzer, O.; Unger, E. Chem. Ber. 1975, 108, 1259-(68)1270.

- (69) Stelzer, O.; Eikmeier, H.-B.; Johannsen, G. Z. Naturforsch. B 1977, 32. 1449–1454.
- (70) Gudat, D.; Lensink, C.; Schmidt, H.; Xi, S. K.; Verkade, J. G. Phosphorus, Sulfur Silicon 1989, 41, 21-29.
- Cheung, K. K.; Lai, T. F.; Lam, S. Y. J. Chem. Soc. (A) 1970, 3345-(71)3348.
- (72) Brown, G. M.; Finholt, J. E.; King, R. B.; Lee, T. W. J. Am. Chem. Soc. 1981, 103, 5249-5250.
- (73) King, R. B.; Shimura, M. J. Organomet. Chem. 1983, 256, 71-73.
 (74) Lane, A. P.; Morton-Blake, D. A.; Payne, D. S. J. Chem. Soc. (A)
- 1967, 1492-1498. (75) Roesky, H. W.; Zimmer, M.; Herbst, R.; Sheldrick, G. M. Z.
- Naturforsch. B 1988, 43, 933-936. (76) Herberhold, M.; Bühlmeyer, W.; Gieren, A.; Hübner, T.; Wu, J. J.
- Organomet. Chem. 1987, 321, 51-66. Chivers, T.; Lensink, C.; Richardson, J. F. J. Organomet. Chem. (77)
- 1987, 325, 169–179. (78) Chivers, T.; Lensink, C.; Richardson, J. F. Phosphorus Sulfur 1987,
- 30, 189-192. (79) Jenkins, L. S.; Willey, G. R. J. Chem. Soc., Dalton Trans. 1979,
- 777-780.
- (80) Kuhn, N.; Winter, M. J. Organomet. Chem. 1983, 243, C47-C50.
- (81) (a) Krishnamurthy, S.S.; Reddy, V.S.; Chandrasekaran, A.; Nethaji, M. Phosphorus, Sulfur Silicon 1992, 64, 99–106. (b) DuBois, D.
- (82)
- M. Phosphoras, Surfar Stateon 1992, 64, 99-100. (b) Dubois, D.
 A.; Duesler, E. N.; Paine, R. T. Inorg. Chem. 1985, 24, 3-5.
 Gallicano, K. D.; Paddock, N. L. Can. J. Chem. 1985, 63, 314-318.
 Gallicano, K. D.; Paddock, N. L.; Rettig, S. J.; Trotter, J. Can. J.
 Chem. 1982, 60, 2415-2418.
 Gallicano, K. D.; Paddock, N. L.; Rettig, S. J.; Trotter, J. Can. J.
 Chem. 1982, 60, 2415-2418.
 Gallicano, K. D.; Paddock, N. L.; Rettig, S. J.; Trotter, J. Can. J. (83)
- (84)Chem. 1984, 62, 1869-1873.
- (85) Nöth, H.; Fluck, E. Z. Naturforsch. B 1984, 39, 744-753.
- (86) Tarassoli, A.; Haltiwanger, R. C.; Norman, A. D. Inorg. Chem. 1982, 21, 2684-2690.
- (87) (a) Andreocci, M. V.; Cauletti, C.; Furlani, C.; King, R. B. Inorg. Chem. 1979, 18, 954–957. (b) Moore, L. S.; Parish, R. V.; Usón, R.; Laguna, A.; Laguna, M.; Fraile, M. N. J. Chem. Soc., Dalton Trans. 1988, 23-26.

- (88) Ellermann, J.; Lietz, M. Z. Naturforsch. B 1980, 35, 64-67.
 (89) Nixon, J. F. J. Chem. Soc. (A) 1969, 1087-1089.
 (90) Hitchcock, P. B.; Jasim, H. A.; Lappert, M. F.; Williams, H. D. J. Chem. Soc., Chem. Commun. 1986, 1634-1636. Niecke, E.; Kröher, R. Z. Naturforsch. B 1979, 34, 837-342.
- (91)
- (92) Pohl, S. Z. Naturforsch. B. 1977, 32, 1342–1343.
 (93) Niecke, E.; Kröher, R. Angew. Chem. 1976, 88, 758–759; Angew. Chem., Int. Ed. Engl. 1976, 15, 692–693. (94) Pohl, S. Chem. Ber. 1979, 112, 3159–3165.
- (a) Bürklin, M.; Hanecker, E.; Nöth, H.; Storch, W. Angew. Chem.
 1985, 97, 980–982; Angew. Chem., Int. Ed. Engl. 1985, 24, 999–1000.
 (b) Detsch, R.; Niecke, E.; Nieger, M.; Schoeller, W. W. Chem. Ber. 1992, 125, 1119–1124.
 (c) Wirringa, U.; Voelker, H.; Roesky, (95) H. W.; Noltemeyer, M. To be published

- H. W.; Notteneyer, M. To be published.
 (96) Recknagel, A.; Steiner, A.; Noltemeyer, M.; Brooker, S.; Stalke, D.; Edelmann, F. T. J. Organomet. Chem. 1991, 414, 327-335.
 (97) Steiner, A.; Stalke, D. Inorg. Chem. 1993, 32, 1977-1981.
 (98) Romanenko, V. D.; Shul'gin, V. F.; Skopenko, V. V.; Chernega, A. N.; Antipin, M. Y.; Struchkov, Y. T.; Boldeskul, I. E.; Markovskii, V. M. Zholkak, K. K. (2009) 1000 L. N. Zh. Obshch. Khim. 1985, 55, 282-291.
 Cowley, A. H.; Kilduff, J. E.; Wilburn, J. C. J. Am. Chem. Soc.
- (99)1981, 103, 1575-1577.
- (100) Romanenko, V. D.; Shul'gin, V. F.; Brusilovets, A. I.; Skopenko, V.
 V.; Markovskii, L. N. Zh. Obshch. Khim. 1982, 52, 2648-2650; J.
 Gen. Chem. USSR 1982, 52, 2344-2345.
- (101) Markovskii, L. N.; Romanenko, V. D.; Shul'gin, V. F.; Chernega, A. N.; Antipin, M. Y.; Struchkov, Y. T. Zh. Obshch. Khim. 1987, 57, 2229–2234; J. Gen. Chem. USSR 1987, 57, 1993.
- (102) Schmidbaur, H.; Schwirten, K.; Pickel, H.-H. Chem. Ber. 1969, 102, 564-567
- (103) Chernega, A. N.; Antipin, M. Y.; Struchkov, Y. T.; Boldeskul, I. E.; Shul'gin, V. F.; Romanenko, V. D. Zh. Strukt. Khim. 1985, 26(5), 120-130; J. Struct. Chem. USSR 1985, 26, 752-760.
- (104) Romanenko, V. D.; Shul'gin, V. F.; Skopenko, V. V.; Markovskii, L. N. Zh. Obshch. Khim. 1985, 55, 538-543.
 (105) Niecke, E.; Kröher, R.; Pohl, S. Angew. Chem. 1977, 89, 902-903;
- Angew. Chem., Int. Ed. Engl. 1977, 16, 864–865. Scherer, O. J.; Kulbach, N.-T.; Glässel, W. Z. Naturforsch. B 1978,
- (106)33, 652-656.
- (a) Scherer, O. J.; Klusmann, P. Z. Anorg. Allg. Chem. 1969, 370, (107)(a) Control, N. Markovski, T. D. Shul'gin, V. F.; Brusilovets, A. I.;
 Skopenko, V. V.; Markovskii, L. N. Zh. Obshch. Khim. 1983, 53, 1428–1429; J. Gen. Chem. USSR 1983, 53, 1284–1285.
- (108) Romanenko, V. D.; Shul'gin, V. F.; Polyachenko, L. N.; Klebanskii, E. O. Phosphorus Sulfur 1983, 18, 459.

- (b) Doubler, V., Jaminaev, J. A. V., Dasso Del, N., Jack, M., Jack, Majola, J.-P. Organometallics 1992, 11, 1131–1137.
 (111) (a) Markovskii, L. N.; Romanenko, V. D.; Shul'gin, V. F.; Ruban, A. V.; Chernega, A. N.; Antipin, M. Y.; Struchkov, Y. T. Zh. Obshch. Khim. 1985, 55, 1752–1759. (b) Chernega, A. N.; Antipin, M. Y.;

- Struchkov, Y. T.; Boldeskul, I. E.; Shul'gin, V. F.; Romanenko, V. D. Ukr. Khim. Zh. 1986, 52, 327-332.
- (112) Witt, M.; Stalke, D.; Henkel, T.; Roesky, H. W.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1991, 663-667.
- (113) Roesky, H. W.; Leichtweis, I.; Noltemeyer, M. Unpublished results.
 (114) Scherer, O. J.; Kerth, J.; Sheldrick, W. S. Angew. Chem. 1984, 96,
- 157-158; Angew. Chem., Int. Ed. Engl. 1984, 23, 156-157. (115) Scherer, O. J.; Kerth J.; Anselmann, R. Phosphorus Sulfur 1983,
- 18, 271-274. (116) Scherer, O. J.; Kerth, J.; Balbach, B. K.; Ziegler, M. L. Angew.
- Chem. 1982, 94, 149; Angew. Chem., Int. Ed. Engl. 1982, 21, 156; Angew. Chem. Suppl. 1982, 169–174.
- (117) Scherer, O. J.; Quintus, P.; Kaub, J.; Sheldrick, W. S. Chem. Ber. **1987**, *120*, 1463–1470.
- (118) Scherer, O. J.; Quintus, P.; Sheldrick, W. S. Chem. Ber. 1987, 120, 1183-1190.
- (119) Scherer, O. J.; Franke, E.; Kaub, J. Angew. Chem. 1986, 98, 83-84; Angew. Chem., Int. Ed. Engl. 1986, 25, 96–97. (120) Keim, W.; Appel, R.; Storeck, A.; Krüger, C.; Goddard, R. Angew.
- Chem. 1981, 93, 91-92; Angew. Chem., Int. Ed. Engl. 1981, 20, 116-117.
- (121) Scherer, O. J.; Nahrstedt, A. Angew. Chem. 1979, 91, 238; Angew. Chem., Int. Ed. Engl. 1979, 18, 234. (122) Romanenko, V. D.; Shul'gin, V. F.; Skopenko, V. V.; Markovskii,
- L. N. Zh. Obshch. Khim. 1984, 54, 2791-2792; J. Gen. Chem. USSR 1984, 54, 2501.
- (123) Chernega, A. N.; Antipin, M. Y.; Struchkov, Y. T.; Romanenko, V. D. Koord. Khim. 1989, 15, 894-901.
- (124) Kilimann, U.; Edelmann, F. T. J. Organomet. Chem. 1993, 444, C15-C17
- (125) Scherer, O. J.; Schnabl, G. Inorg. Chim. Acta 1976, 19, L38.
 (126) Recknagel, A.; Witt, M.; Edelmann, F. T. J. Organomet. Chem. 1989, 371, C40-C44.
- (127) Reference 20 in ref 8.
- (128) Scherer, O. J.; Klusmann, P. Angew. Chem. 1968, 80, 560-561; Angew. Chem., Int. Ed. Engl. 1968, 7, 541–542. (129) Scherer, O. J.; Kerth, J. J. Organomet. Chem. 1983, 243, C33–C36.
- (130) Scherer, O. J.; Wolmershäuser, J.; Conrad, H. Angew. Chem. 1983, 95, 427-428; Angew. Chem., Int. Ed. Engl. 1983, 22, 404-405.
- (131) Scherer, O. J.; Kerth, J.; Ziegler, M. L. Angew. Chem. 1983, 95, 510-511; Angew. Chem., Int. Ed. Engl. 1983, 22, 503.
- (132) Hasselbring, R.; Roesky, H. W.; Rietzel, M.; Witt. M.; Noltemeyer, M. Phosphorus, Sulfur Silicon 1992, 72, 209-215.
- (133) Hasselbring, R.; Roesky, H. W.; Heine, A.; Stalke, D.; Sheldrick, G. M. Z. Naturforsch. B 1994, 49, 43-49.
- (134) (a) Schmulbach, C. D.; Derderian, C. J. Inorg. Nucl. Chem. 1970, 32, 3397-3398. (b) Pandey, S. K.; Hasselbring, R.; Steiner, A.; Stalke, D.; Roesky, H. W. Polyhedron 1993, 12, 2941-2945.
- (135) Pandey, S. K.; Steiner, A.; Roesky, H. W.; Stalke, D. Inorg. Chem. 1993, 32, 5444-5446.
- (136) Hasselbring, R. Ph. D. Thesis, Göttingen (Ger.) 1992.
- (137) Hasselbring, R.; Pandey, S. K.; Roesky, H. W.; Stalke, D.; Steiner, A. J. Chem. Soc., Dalton Trans. 1993, 1, 3447-3451.
- (138) Pandey, S. K.; Steiner, A.; Roesky, H. W.; Stalke, D. Angew. Chem. 1993, 105, 625-627; Angew. Chem., Int. Ed. Engl. 1993, 32, 596-598
- (139) Schmidpeter, H.; Böhm, R.; Groeger, H. Angew. Chem. 1964, 76, 860-861; Angew. Chem., Int. Ed. Engl. 1964, 3, 760.
- (140) Keller, H. J.; Schmidpeter, A. Z. Naturforsch. B 1967, 22, 232-237.
 (141) Hota, N. K.; Harris, R. O. J. Chem. Soc., Chem. Commun. 1972,
- 407-408.
- (142) Calhoun, H. P.; Paddock, N. L.; Wingfield, J. N. Can. J. Chem. 1975, 53, 1765-1773.
- (143) Dyson, J.; Paddock, N. L. J. Chem. Soc., Chem. Commun. 1966, 191 - 192
- (144) Cotton, F. A.; Rusholme, G. A.; Shaver, A. J. Coord. Chem. 1973, 3.99-104.
- (145) (a) Paddock, N.L.; Ranghanathan, T.N.; Wingfield, J.N.J. Chem. Soc., Dalton Trans. 1972, 1578-1580. (b) Chandrasekhar, V.; Krishnamurthy, S. S.; Woods, M. ACS Symp. Ser. 1981, 171, 481-485.
- (146) Allcock, H. R.; Allen, R. W.; O'Brien, J. P. J. Am. Chem. Soc. 1977. 99, 3984-3987
- (147) Allen, R. W.; O'Brien, J. P.; Allcock, H. R. J. Am. Chem. Soc. 1977, 99, 3987-3991.
- (148) O'Brien, J. P.; Allen, R. W.; Allcock, H. R. Inorg. Chem. 1979, 18, 2230-2235
- (149) Harrison, W.; Paddock, N. L.; Trotter, J.; Wingfield, J. N. J. Chem. Soc., Chem. Commun. 1972, 23-24.
- (150) Harrison, W.; Trotter, J. J. Chem. Soc., Dalton Trans. 1973, 61-64. (151) Paddock, N. L.; Ranghanathan, T. N.; Rettig, S. J.; Sharma, R. D.;
- Trotter, J. Can. J. Chem. 1981, 59, 2429–2434. (152) Marsh, W. C.; Paddock, N. L.; Stewart, C. J.; Trotter, J. J. Chem.
- Soc., Chem. Commun. 1970, 1190-1191.
- (153) Marsh, W. C.; Trotter, J. J. Chem. Soc. (A) 1971, 1482–1486.
 (154) Gallicano, K. D.; Paddock, N. L.; Rettig, S. J.; Trotter, J. Can. J.
- (154)Chem. 1981, 59, 2435–2440.
- (155)Calhoun, H. P., Paddock, N. L.; Trotter, J.; Wingfield, J. N. J. Chem. Soc., Chem. Commun. 1972, 875-876.

Cyclic Phosphazanes and Phosphazenes

- (156) Calhoun, H. P.; Paddock, N. L. J. Chem. Soc., Dalton Trans. 1973, 2708-2712.
- (157) Srivastava, S. C.; Shrimal, A. K.; Pandey, R. V. Transition Met. Chem. 1987, 12, 421–423
- (158) Bestari, K.; Cordes, A. W.; Oakley, R. T.; Young, K. M. J. Am. Chem. Soc. 1990, 112, 2249-2255.
- Cordes, A. W.; Bestari, K.; Oakley, R. T. Acta Crystallogr. Sect. (159)C 1990, 46, 504-506.
- (160) Liebermann, J. Ph. D. Thesis, Göttingen (Ger.) 1990.
 (161) Roesky, H. W.; Olms, P.; Witt, M.; Keller, K.; Stalke, D.; Henkel, T.; Sheldrick, G. M. J. Chem. Soc., Chem. Commun. 1989, 366-367
- (162) Ehrig, M.; Ahlrichs, R. Theoret. Chim. Acta 1992, 81, 245–254.
 (163) Katti, K. V.; Roesky, H. W.; Rietzel, M. Inorg. Chem. 1987, 26, 4032-4035.
- (0Ims, P.; Roesky, H. W.; Keller, K.; Noltemeyer, M.; Bohra, R.;
 Schmidt, H.-G.; Stalke, D. Chem. Ber. 1991, 124, 2655-2661.
 (a) Witt, M.; Roesky, H. W. Unpublished results. (b) Rietzel, M. (164)
- (165)M.Sc. Thesis, Göttingen (Ger.) 1986. (c) Rietzel, M. Ph.D. Thesis, Göttingern (Ger.) 1989.
- (166) Hasselbring, R.; Roesky, H. W.; Noltemeyer, M. Angew. Chem. 1992, 104, 613-615; Angew. Chem., Int. Ed. Engl. 1992, 31, 601-603.
- Roesky, H. W.; Katti, K. V.; Seseke, U.; Schmidt, H.-G.; Egert, E.; (167)Herbst, R.; Sheldrick, G. M. J. Chem. Soc., Dalton, Trans. 1987, 847-849.
- (168) Witt, M.; Roesky, H. W.; Noltemeyer, M.; Schmidpeter, A. Nouv. J. Chim. 1989, 13, 403-411.
- (169) Chivers, T.; Doxsee, D. D.; Fait, J. F. J. Chem. Soc., Chem. Commun. 1989, 1703-1705.
- (170) Chivers, T.; Kumaravel, S. S.; Meetsma, A.; van de Grampel, J. C.;
- van der Lee, A. Inorg. Chem. 1990, 29, 4591-4592. Witt, M.; Roesky, H. W.; Noltemeyer, M.; Sheldrick, G. M. Angew. Chem. 1988, 100, 852-853; Angew. Chem., Int. Ed. Engl. 1988, 27, (171)850-851
- (172) Roesky, H. W.; Raubold, T.; Noltemeyer, M.; Witt, M.; Bohra, R. Z. Naturforsch. B 1992, 47, 171-174. (173) Herbst, R.; Katti, K. V.; Roesky, H. W.; Sheldrick, G. M. Z.
- Naturforsch. B 1987, 42, 1387-1390.
- (174) Schmulbach, C. D.; Derderian, C. J. Inorg. Nucl. Chem. 1963, 25, 1395-1396.
- (175) Sowerby, D. B.; Tillott, R. J. J. Chem. Soc., Dalton Trans. 1977, 455-458
- (176) Bezman, I. I.; Smalley, J. H. Chem. Ind. (London) 1960, 839-840.
- (177) Bermann, M.; van Wazer, J. R. Inorg. Synth. 1974, 15, 199-202.
- (178) Schmidpeter, A.; Ebeling, J. Angew. Chem. 1967, 79, 534-535; Angew. Chem., Int. Ed. Engl. 1967, 6, 565-566.
 (179) Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic
- Press: New York, 1972. (180) (a) Cox, W.; Corey, E. R. J. Chem. Soc., Chem. Commun. 1969, 205.
- (b) Olms, P.; Roesky, H. W.; Keller, K.; Noltemeyer, M. Z. Naturforsch. B 1992, 47, 1609–1613.
 (181) Rietzel, M.; Roesky, H. W.; Katti, K. V.; Noltemeyer, M.; Symons,
- M. C. R.; Abu-Raqabah, A. J. Chem. Soc., Dalton Trans. 1991, 1285-1290
- (182) Roesky, H. W.; Scholz, U.; Noltemeyer, M. Z. Anorg. Allg. Chem. 1989, 576, 255-266.
- (183) Scholz, U. Ph.D. Thesis, Göttingen (Ger.) 1988.
- (184) Scherer, O. J.; Nahrstedt, A. J. Organomet. Chem. 1979, 166, C1-C4.

- (185) Cavell, R. G.; Katti, K. V. Phosphorus, Sulfur Silicon 1989, 41, 43-50.
- (186) Katti, K. V.; Seseke, U.; Roesky, H. W. Inorg. Chem. 1987, 26, 814-816
- (187) Katti, K. V.; Roesky, H. W.; Rietzel, M. Z. Anorg. Allg. Chem. 1987, 553, 123-126. (a) Imhoff, P.; Elsevier, C. J. J. Organomet. Chem. 1989, 361, C61-(188)
- C65. (b) Elsevier, C. J.; Imhoff, P. Phosphorus, Sulfur Silicon 1990, 49/50, 405-408.
- (189) Roesky, H. W.; Zimmer, M.; Noltemeyer, M. Chem. Ber. 1989, 122, 63-65.
- (190) Roesky, H. W.; Swarat, K.; Edelmann, F. Z. Naturforsch. B 1988, 43, 231-232.
- (191) (a) Roesky, H. W.; Liebermann, J.; Noltemeyer, M.; Schmidt, H.-G. Chem. Ber. 1989, 122, 1641-1643. (b) Igau, A.; Dufour, N.; Mathieu, A.; Majoral, J.-P. Angew. Chem. 1993, 105, 76-78; Angew. Chem., Int. Ed. Engl. 1993, 32, 95-96.
- Witt, M.; Dhathathreyan, K. S.; Roesky, H. W. Adv. Inorg. Chem. (192)Radiochem. 1986, 30, 223-312.
- (193) Majoral, J.-P.; Dufour, N.; Mayer, F.; Caminade, A.-M.; Choukroun, R.; Gervais, D. J. Chem. Soc., Chem. Commun. 1990, 507-508.
 (194) Dufour, N.; Majoral, J.-P.; Caminade, A.-M.; Choukroun, R.; Dromzee, Y. Organometallics 1991, 10, 45-48.
- (195) Clemens, D. F.; Sisler, H. H.; Brey, W. S., Jr. Inorg. Chem. 1966, 5, 527-533.
- (196) Beck, W. In Transition Metal Chemistry; Müller, A., Diemann, E., Eds.; VCH: Weinheim (Ger.), 1980; 307–355 (see ref 87).
- (197) Kraaijkamp, J. G.; Grove, D. M.; van Koten, G. M.; Schmidpeter, A. Inorg. Chem. 1988, 27, 2612-2617.
- (198) (a) Lattman, M.; Chopra, S. K.; Cowley, A. H.; Arif, A. M. Organometallics 1986, 5, 677–683. (b) de Meester, P.; Lattman, M.; Chu, S. S. C. Acta Crystallogr. Sect. C 1987, 43, 162-164.
- (199) (a) Dupart, J. M.; Grand, A.; Pace, S.; Riess, J. G. J. Am. Chem. Soc. 1982, 104, 2316-2318. (b) Lattman, M.; Burns, E. G.; Chopra, S. K.; Cowley, A. H.; Arif, A. M. Inorg. Chem. 1987, 26, 1926–1929. (c) Khasnis, D. V.; Lattman, M.; Siriwardane, U. Phosphorus, Sulfur Silicon 1990, 49/50, 459-465. (d) Riess, J. G.; Jeanneaux, F.; Wachter, J.; Grand, A. ACS Symp. Ser. 1981, 171, 469-472.
- (200) Arif, A. M.; Cowley, A. H.; Pakulski, M. J. Am. Chem. Soc. 1985, 107, 2553-2554
- (201) Scherer, O. J.; Göbel, K.; Kaub, J. Angew. Chem. 1987, 99, 59-61; Angew. Chem., Int. Ed. Engl. 1987, 26, 59-61.
- (202) Newton, M. G.; King, R. B.; Chang, M.; Gimeno, J. J. Am. Chem. Soc. 1978, 109, 1632–1634.
- (203) Katti, K. V.; Cavell, R. G. Inorg. Chem. 1989, 28, 3033-3036.
- (204) Katti, K. V.; Cavell, R. G. Organometallics 1989, 8, 2147-2153.
- (205) Katti, K. V.; Cavell, R. G. Organometallics 1988, 7, 2236–2238.
 (206) Katti, K. V.; Batchelor, R. J.; Einstein, F. W. B.; Cavell, R. G. Inorg. Chem. 1990, 29, 808–814.
- Katti, K. V.; Cavell, R. G. Phosphorus, Sulfur Silicon 1990, 49/50, (207)467-470.
- (208)Ashby, M. T.; Li, Z. Inorg. Chem. 1992, 31, 1321-1322.
- (209) Ellermann, J.; Sutter, J.; Knoch, F. A.; Moll, M. Angew. Chem. 1993, 105, 763-764; Angew. Chem., Int. Ed. Engl. 1993, 32, 700-701.
- (210) Möhring, V. M.; Fink, G. Angew. Chem. 1985, 97, 982-984; Angew. Chem., Int. Ed. Engl. 1985, 24, 1001-1003.
- (211) Roesky, H. W.; Lücke, M. Angew. Chem. 1989, 101, 480-481; Angew. Chem., Int. Ed. Engl. 1989, 28, 493.